

Confluence by Z in Agda for PLFA

Vincent van Oostrom University of Sussex

vvo@sussex.ac.uk

UNIVERSITY of SUSSEX IWC, Tallinn, Estonia July 9th 2024

Pen-and-paper confluence of $\lambda\beta$ (cf. Barendregt 84)

Definition (λ **-term; Church 32)**

A λ -term either is a variable x or an application MN or a λ -abstraction $\lambda x.M$

Definition (λ -term)

A λ -term either is a variable x or an application MN or a λ -abstraction $\lambda x.M$

 λ -terms up to α -congruence induced by $\lambda x.M = \lambda y.M[x:=y]$, for y not in M

Definition (λ -term)

A λ -term either is a variable x or an application MN or a λ -abstraction $\lambda x.M$

 λ -terms up to α -congruence induced by $\lambda x.M = \lambda y.M[x:=y]$, for y not in M

Definition (β **-reduction)**

 \rightarrow_{β} on λ -terms is compatible closure of β -scheme $(\lambda x.M) N = M[x:=N]$

Definition (λ -term)

A λ -term either is a variable x or an application MN or a λ -abstraction $\lambda x.M$

 λ -terms up to α -congruence induced by $\lambda x.M = \lambda y.M[x:=y]$, for y not in M

Definition (β **-reduction)**

 \rightarrow_{β} on λ -terms is compatible closure of β -scheme $(\lambda x.M) N = M[x:=N]$

M[x:=N] the capture-avoiding substitution of N for x in M

Definition (λ -term)

A λ -term either is a variable x or an application MN or a λ -abstraction $\lambda x.M$

 λ -terms up to α -congruence induced by $\lambda x.M = \lambda y.M[x:=y]$, for y not in M

Definition (β **-reduction)**

 \rightarrow_{β} on λ -terms is compatible closure of β -scheme $(\lambda x.M) N = M[x:=N]$

M[x:=N] the capture-avoiding substitution of N for x in M

Theorem (Church-Rosser 36)

 $ightarrow_{eta}$ has the Church–Rosser property

Definition (λ -term)

A λ -term either is a variable x or an application MN or a λ -abstraction $\lambda x.M$

 λ -terms up to α -congruence induced by $\lambda x.M = \lambda y.M[x:=y]$, for y not in M

Definition (β **-reduction)**

 \rightarrow_{β} on λ -terms is compatible closure of β -scheme $(\lambda x.M) N = M[x:=N]$

M[x:=N] the capture-avoiding substitution of N for x in M

Theorem (Church-Rosser)

 $ightarrow_{eta}$ has the Church–Rosser property

 $\iff \rightarrow_{\beta}$ is confluent $\iff \twoheadrightarrow_{\beta}$ has the diamond property

Definition (Z-property of \rightarrow for hullet-function \bullet on objects)

Definition (Z-property of ightarrow for •; Loader 98, Dehornoy & $rak{V}$ 08)

for every step $a \rightarrow b$ (upperbound) $b \rightarrow a^{\bullet}$ (monotonic) $a^{\bullet} \rightarrow b^{\bullet}$

Theorem (Loader 98)

for every step $a \rightarrow_{\beta} b$, both $b \twoheadrightarrow_{\beta} a^{\bullet}$ (ub) and $a^{\bullet} \twoheadrightarrow_{\beta} b^{\bullet}$ (mon), where

$$\begin{array}{rcl} x^{\bullet} & := & x \\ (\lambda x.M)^{\bullet} & := & \lambda x.M^{\bullet} \\ ((\lambda x.M)N)^{\bullet} & := & M^{\bullet}[x:=N^{\bullet}] \\ (MN)^{\bullet} & := & M^{\bullet}N^{\bullet} & otherwise (if M = x or M = PQ) \end{array}$$

Theorem (Loader 98)

for every step $a \rightarrow_{\beta} b$, both $b \twoheadrightarrow_{\beta} a^{\bullet}$ (ub) and $a^{\bullet} \twoheadrightarrow_{\beta} b^{\bullet}$ (mon), where

$$\begin{array}{rcl} x^{\bullet} & := & x \\ (\lambda x.M)^{\bullet} & := & \lambda x.M^{\bullet} \\ ((\lambda x.M)N)^{\bullet} & := & M^{\bullet}[x:=N^{\bullet}] \\ (MN)^{\bullet} & := & M^{\bullet}N^{\bullet} & otherwise \end{array}$$

Remark

full development map • contracting all β -redex-patterns in λ -term (Church–Rosser 30s; Gross–Knuth, preprint 70s; Takahashi, Loader 90s)

Proof.

(ub) and (mon) by induction on $M \rightarrow_{\beta} N$

$$(\lambda x.M) N \xrightarrow{\beta} M[x:=N]$$

 μ upperbound
 $M^{\bullet}[x:=N^{\bullet}] \xrightarrow{---} M[x:=N]^{\bullet}$
monotonic

Proof.

(ub) and (mon) by induction on $M
ightarrow_{eta} N$ with base case eta

$$(\lambda x.M) N \longrightarrow M[x:=N]$$

 β extensive & term rewrite system
 $M^{\bullet}[x:=N^{\bullet}] \longrightarrow M[x:=N]^{\bullet}$
right-hand side

Proof.

(ub) and (mon) by induction on $M \rightarrow_{\beta} N$ with base case β , using: (extensive) $M \twoheadrightarrow_{\beta} M^{\bullet}$ (ctx,sub) if $M \twoheadrightarrow_{\beta} N$ and $P \twoheadrightarrow_{\beta} Q$, then $M[x:=P] \twoheadrightarrow_{\beta} N[y:=Q]$ (right-hand side) $M^{\bullet}[x:=N^{\bullet}] \twoheadrightarrow_{\beta} M[x:=N]^{\bullet}$

$$(\lambda x.M) N \longrightarrow M[x:=N]$$

 β extensive & term rewrite system
 $M^{\bullet}[x:=N^{\bullet}] \longrightarrow M[x:=N]^{\bullet}$
right-hand side

Proof.

(ub) and (mon) by induction on $M \rightarrow_{\beta} N$ with base case β , using:

(extensive) $M \rightarrow_{\beta} M^{\bullet}$ ($\overline{\operatorname{ctx}}, \overline{\operatorname{sub}}$) if $M \rightarrow_{\beta} N$ and $P \rightarrow_{\beta} Q$, then $M[x:=P] \rightarrow_{\beta} N[y:=Q]$ (right-hand side) $M^{\bullet}[x:=N^{\bullet}] \rightarrow_{\beta} M[x:=N]^{\bullet}$ (ext),(rhs),($\overline{\operatorname{ctx}}$) by induction on M; ($\overline{\operatorname{sub}}$) by induction on $M \rightarrow_{\beta} N$

UNIVERSITY OF SUSSEX IWC, Tallinn, Estonia July 9th 2024

Lemma (β -critical peak)

 $((\lambda x.M) N)[y:=Q] \ _{\beta} \leftarrow (\lambda y.(\lambda x.M) N) Q \rightarrow_{\beta} (\lambda y.M[x:=N]) Q \text{ is single-step joinable}$

Lemma (β -critical peak)

 $((\lambda x.M)N)[y:=Q] \ _{\beta} \leftarrow (\lambda y.(\lambda x.M)N)Q \rightarrow_{\beta} (\lambda y.M[x:=N])Q$ is single-step joinable

Proof.

$$\begin{array}{l} ((\lambda x.M) N)[y:=Q] = (\lambda x.M[y:=Q]) N[y:=Q] \rightarrow_{\beta} \\ M[y:=Q][x:=N[y:=Q]] = \underset{SL}{\mathsf{SL}} M[x:=N][y:=Q] \ _{\beta} \leftarrow (\lambda y.M[x:=N]) Q \end{array}$$

Lemma (β -critical peak)

 $((\lambda x.M) N)[y:=Q] \ _{\beta} \leftarrow (\lambda y.(\lambda x.M) N) Q \rightarrow_{\beta} (\lambda y.M[x:=N]) Q \text{ is single-step joinable}$

Proof.

$$\begin{array}{l} ((\lambda x.M) N)[y:=Q] = (\lambda x.M[y:=Q]) N[y:=Q] \to_{\beta} \\ M[y:=Q][x:=N[y:=Q]] = SL M[x:=N][y:=Q] \ _{\beta} \leftarrow (\lambda y.M[x:=N]) Q \end{array}$$

Remark

closure of \rightarrow_{β} under substitution (sub) $\iff \beta$ -critical peak lemma \iff SL

Lemma (β -critical peak)

 $((\lambda x.M) N)[y:=Q] \ _{\beta} \leftarrow (\lambda y.(\lambda x.M) N) Q \rightarrow_{\beta} (\lambda y.M[x:=N]) Q \text{ is single-step joinable}$

Proof.

$$\begin{array}{l} ((\lambda x.M) N)[y:=Q] = (\lambda x.M[y:=Q]) N[y:=Q] \rightarrow_{\beta} \\ M[y:=Q][x:=N[y:=Q]] = SL M[x:=N][y:=Q] \ _{\beta} \leftarrow (\lambda y.M[x:=N]) Q \end{array}$$

Remark

closure of \rightarrow_{β} under substitution (sub) $\iff \beta$ -critical peak lemma \iff SL proof of (rhs) uses substitution lemma

Lemma (β -critical peak)

 $((\lambda x.M) N)[y:=Q] \ _{\beta} \leftarrow (\lambda y.(\lambda x.M) N) Q \rightarrow_{\beta} (\lambda y.M[x:=N]) Q \text{ is single-step joinable}$

Proof.

$$\begin{array}{l} ((\lambda x.M) N)[y:=Q] = (\lambda x.M[y:=Q]) N[y:=Q] \rightarrow_{\beta} \\ M[y:=Q][x:=N[y:=Q]] = SL M[x:=N][y:=Q] \ _{\beta} \leftarrow (\lambda y.M[x:=N]) Q \end{array}$$

Remark

closure of \rightarrow_{β} under substitution (sub) $\iff \beta$ -critical peak lemma \iff SL proof of (rhs) uses substitution lemma β -redexes do have overlap (redex-patterns do not)

Lemma (β -critical peak)

 $((\lambda x.M) N)[y:=Q] \ _{\beta} \leftarrow (\lambda y.(\lambda x.M) N) Q \rightarrow_{\beta} (\lambda y.M[x:=N]) Q \text{ is single-step joinable}$

Proof.

$$\begin{array}{l} ((\lambda x.M) N)[y:=Q] = (\lambda x.M[y:=Q]) N[y:=Q] \rightarrow_{\beta} \\ M[y:=Q][x:=N[y:=Q]] = SL M[x:=N][y:=Q] \ _{\beta} \leftarrow (\lambda y.M[x:=N]) Q \end{array}$$

Remark

closure of \rightarrow_{β} under substitution (sub) $\iff \beta$ -critical peak lemma \iff SL proof of (rhs) uses substitution lemma β -redexes do have overlap; SL needed to have term rewrite system

Formalisation of confluence by Z for $\lambda\beta$

Motivation

confluence of $\lambda\beta$ -calculus PL-litmus test for proof assistants (inductive λ -terms and β -steps, binding, substitution, modulo α)

Formalisation of confluence by Z for $\lambda\beta$

Motivation

confluence of $\lambda\beta$ -calculus PL-litmus test for proof assistants

claim: Z gives shortest proof of confluence of $\lambda\beta$

Formalisation of confluence by Z for $\lambda\beta$ in Agda

Motivation

confluence of $\lambda\beta$ -calculus PL-litmus test for proof assistants

claim: Z gives shortest proof of confluence of $\lambda\beta$

here: test claim in Agda; had wanted to learn some Agda for some time (done in 2021; learned at IWC 2023 of Andrea Laretto's MSc thesis)

Formalisation of confluence by Z in Agda based on PLFA

Motivation

confluence of $\lambda\beta$ -calculus PL-litmus test for proof assistants

claim: Z gives shortest proof of confluence of $\lambda\beta$

here: test claim in Agda

design decision: adapt extant PLFA proof (by triangle property; Takahashi 95) (Programming Language Foundations in Agda by Wadler, Kokke, Siek 20 adaptation allowed reuse of inductive λ -terms, β -steps and SL reuse good software engineering and useful since absolute Agda beginner)

Formalisation of confluence by Z in Agda based on PLFA

Motivation

confluence of $\lambda\beta$ -calculus PL-litmus test for proof assistants

claim: Z gives shortest proof of confluence of $\lambda\beta$

here: test claim in Agda

design decision: adapt extant PLFA proof (by triangle property

also means have to stick with design decisions of PLFA

λ -terms in PLFA

Definition (Nameless λ -term; de Bruijn 72)

PLFA design decision: scoped nameless λ -terms (avoids α -renaming at the expense of re-indexing)

Definition (Nameless λ **-term)**

PLFA design decision: scoped nameless λ -terms

<u>2</u>: named $\lambda x.\lambda y.x(xy)$, nameless $\lambda\lambda$ SO((SO)0), scoped 0 $\vdash \lambda\lambda$ SO((SO)0)

Definition (Nameless λ -term)

PLFA design decision: scoped nameless λ -terms

Definition (Scoped λ -term; & van der Looij & Zwitserlood 04??)

 $i \vdash t$ is nameless λ -term t in scope i

(think of *i* as binding-**stack** with *t* closed within it; *i* is upperbound on indices in *t*)

Definition (Nameless λ -term)

PLFA design decision: scoped nameless $\lambda\text{-terms}$

Definition (Scoped λ -term)

 $i \vdash t$ is nameless λ -term t in scope i (bottom–up) inductively derivable by:

$$\frac{\mathsf{S}i\vdash\mathsf{0}}{i\vdash t}\,\mathsf{0}\quad \frac{\mathsf{S}i\vdash\mathsf{S}t}{i\vdash t}\,\mathsf{S}\quad \frac{i\vdash\lambda t}{\mathsf{S}i\vdash t}\,\lambda\quad \frac{i\vdash t_1t_2}{i\vdash t_1\quad i\vdash t_2}\,@$$

Definition (Nameless λ -term)

PLFA design decision: scoped nameless λ -terms

Definition (Scoped λ -term)

 $i \vdash t$ is nameless λ -term t in scope i

$$\frac{\mathsf{S}i\vdash\mathsf{0}}{i\vdash t}\,\mathsf{0}\quad\frac{\mathsf{S}i\vdash\mathsf{S}t}{i\vdash t}\,\mathsf{S}\quad\frac{i\vdash\lambda t}{\mathsf{S}i\vdash t}\,\lambda\quad\frac{i\vdash t_1t_2}{i\vdash t_1\quad i\vdash t_2}\,@$$

Remark

these are generalised nameless λ -terms (Bird & Paterson 99; Hendriks & 03) PLFA only allows S on 0 and on other Ss; nameless λ -terms; no ho-signature

PLFA design decision: single substitution t[s] by parallel substitution $0 \mapsto s, Si \mapsto i$ (substitute *s* for the free 0s in *t*; decrement other indices)

PLFA design decision: single substitution t[s] by parallel substitution $0 \mapsto s, Si \mapsto i \rightarrow_{\beta}$ on nameless λ -terms is compatible closure of β -scheme $i \vdash (\lambda t) s = i \vdash t[s]$

 \rightarrow_{β} -steps in PLFA

PLFA design decision: single substitution t[s] by parallel substitution $0 \mapsto s, Si \mapsto i \rightarrow_{\beta}$ on nameless λ -terms is compatible closure of β -scheme $i \vdash (\lambda t) s = i \vdash t[s]$

 $0 \vdash \underline{2} \underline{2} \rightarrow_{\beta} 0 \vdash (\lambda S0 ((S0) 0))[\underline{2}] = 0 \vdash \lambda S\underline{2} ((S\underline{2}) 0) = 0 \vdash \lambda \underline{2} (\underline{2} 0)$

PLFA design decision: single substitution t[s] by parallel substitution $0 \mapsto s, Si \mapsto i \rightarrow_{\beta}$ on nameless λ -terms is compatible closure of β -scheme $i \vdash (\lambda t) s = i \vdash t[s]$

Lemma ($\lambda\beta$ is a ho-term rewriting system; in PLFA)

(*c*tx,*sub*) closure of reduction under contexts,substitutions (substitution lemma) for single substitution via parallel substitution

PLFA design decision: single substitution t[s] by parallel substitution $0 \mapsto s, Si \mapsto i \rightarrow_{\beta}$ on nameless λ -terms is compatible closure of β -scheme $i \vdash (\lambda t) s = i \vdash t[s]$

Lemma ($\lambda\beta$ is a ho-term rewriting system; in PLFA)

(ctx,sub) closure of reduction under contexts,substitutions

(substitution lemma) for single substitution via parallel substitution

Remark

(*ctx*) is called **congruence** in PLFA (wrong; **compatible**)

PLFA design decision: single substitution t[s] by parallel substitution $0 \mapsto s, Si \mapsto i \rightarrow_{\beta}$ on nameless λ -terms is compatible closure of β -scheme $i \vdash (\lambda t) s = i \vdash t[s]$

Lemma ($\lambda\beta$ is a ho-term rewriting system; in PLFA)

(ctx,sub) closure of reduction under contexts,substitutions (substitution lemma) for single substitution via parallel substitution

Remark

 (\overline{ctx}) is called congruence in PLFA; (\overline{sub}) missing from PLFA (50 loc)

 \rightarrow_{β} -steps in PLFA

PLFA design decision: single substitution t[s] by parallel substitution $0 \mapsto s, Si \mapsto i \rightarrow_{\beta}$ on nameless λ -terms is compatible closure of β -scheme $i \vdash (\lambda t) s = i \vdash t[s]$

Lemma ($\lambda\beta$ is a ho-term rewriting system; in PLFA)

(ctx,sub) closure of reduction under contexts,substitutions (substitution lemma) for single substitution via parallel substitution

Remark

 (\overline{ctx}) is called congruence in PLFA; (\overline{sub}) missing from PLFA; (substitution lemma) is called commutation in PLFA (wrong; self-distributivity / associativity)

 \rightarrow_{β} -steps in PLFA

PLFA design decision: single substitution t[s] by parallel substitution $0 \mapsto s, Si \mapsto i \rightarrow_{\beta}$ on nameless λ -terms is compatible closure of β -scheme $i \vdash (\lambda t) s = i \vdash t[s]$

Lemma ($\lambda\beta$ is a ho-term rewriting system; in PLFA)

(ctx,sub) closure of reduction under contexts,substitutions (substitution lemma) for single substitution via parallel substitution

Remark

 (\overline{ctx}) is called congruence in PLFA; (\overline{sub}) missing from PLFA; (substitution lemma) is called commutation in PLFA; terms / steps ad hoc (no signature)

Basic rewriting and full development map • for PLFA

 $\begin{array}{l} \mathsf{app-cong}: \forall \{ \Gamma \} \ \{ \textit{K L } \textit{M } \textit{N} : \Gamma \vdash \star \} \rightarrow \textit{K} \xrightarrow{} \textit{M} \xrightarrow{} \textit{N} \rightarrow \textit{K} \cdot \textit{M} \xrightarrow{} \textit{L} \cdot \textit{N} \\ \mathsf{rew-rew}: \forall \{ \Gamma \} \ \{ \textit{M } \textit{N} : \Gamma \ , \star \vdash \star \} \ \{ \textit{K L} : \Gamma \vdash \star \} \end{array}$

- \rightarrow *M* — \twoheadrightarrow *N*
- \rightarrow K \twoheadrightarrow L
 - -----
- ightarrow M [K] » N [L]

Remark

{...} indicates implicit argument; Γ is scope; \star is singleton type of λ -terms app-cong function taking reductions $K \twoheadrightarrow_{\beta} L$ and $K \twoheadrightarrow_{\beta} L$ yielding $KM \twoheadrightarrow_{\beta} LN$ rew-rew same but yielding closure under contexts, substitutions

Basic rewriting and full development map • for PLFA

app-cong: $\forall \{ \Gamma \} \{ K L M N : \Gamma \vdash \star \} \rightarrow K \longrightarrow L \rightarrow M \longrightarrow N \rightarrow K \cdot M \longrightarrow L \cdot N$ rew-rew : $\forall \{ \Gamma \} \{ M N : \Gamma, \star \vdash \star \} \{ K L : \Gamma \vdash \star \}$ $\rightarrow M \longrightarrow N$ $\rightarrow K \longrightarrow I$ _____ $\rightarrow M [K] \longrightarrow N [L]$ • : $\forall \{ \Gamma A \} \rightarrow \Gamma \vdash A \rightarrow \Gamma \vdash A$ $(' x) \bullet = ' x$ $(\lambda M) \bullet = \lambda (M \bullet)$ $((\lambda M) \cdot N) \bullet = M \bullet [N \bullet]$ $(\mathbf{M} \cdot \mathbf{N}) \bullet = (\mathbf{M} \bullet) \cdot (\mathbf{N} \bullet)$

prime indicates index (as λ -term)

(Extensive) $M \rightarrow M^{\bullet}$ for PLFA

extensive : $\forall \{\Gamma A\} \rightarrow (M : \Gamma \vdash A) \rightarrow M \longrightarrow M \bullet$ extensive ('_) = _ extensive (& M) = abs-cong (extensive M) extensive ((& M) · N) = _ $\longrightarrow \langle \beta \rangle$ rew-rew (extensive M) (extensive N) extensive ('_ · N) = appR-cong (extensive N) extensive ($L \cdot M \cdot N$) = app-cong (extensive ($L \cdot M$)) (extensive N)

(Extensive) $M \rightarrow M^{\bullet}$ for PLFA

extensive : $\forall \{ \Gamma A \} \rightarrow (M : \Gamma \vdash A) \rightarrow M \longrightarrow M \bullet$ extensive ('_) = _ extensive (& M) = abs-cong (extensive M) extensive ((& M) · N) = _ $\longrightarrow \langle \beta \rangle$ rew-rew (extensive M) (extensive N) extensive ('_ · N) = appR-cong (extensive N) extensive (L · M · N) = app-cong (extensive (L · M)) (extensive N)

Remark

recursion on scoped nameless $M : \Gamma \vdash A$ (\blacksquare is empty reduction) otherwise only compatibility (wrongly named congruence in PLFA)

(Upperbound) $N \twoheadrightarrow M^{\bullet}$ if $M \rightarrow_{\beta} N$ for PLFA

```
upperbound : ∀ {Γ} → {M N : Γ ⊢ *}

→ M →→ N

→ N →→ M •

upperbound {_} {M_} (ζ φ) = abs-cong (upperbound φ)

upperbound {_} {(`_) · _} {_} (ζ φ) = appR-cong (upperbound φ)

upperbound {_} {(M_) · M} {((M_) · M)} (ξ_1 (ζ φ)) = _→ (β ⟩ rew-rew (upperbound φ) (extensive M)

upperbound {_} {(M_L) · _} {.((M_L) · _)} (ξ_2 φ) = _→ (β ⟩ rew-rew (extensive L) (upperbound φ)

upperbound {_} {(M_L) · M} {.(subst (subst-zero M) L)} β = rew-rew (extensive L) (extensive M)

upperbound {_} {. _ · M} {.(_ · M)} (ξ_1 φ) = app-cong (upperbound φ) (extensive M)

upperbound {_} {. _ · · M} {.(_ · M)} (ξ_2 φ) = app-cong (extensive (K · L)) (upperbound φ)
```

(Upperbound) $N \twoheadrightarrow M^{\bullet}$ if $M \rightarrow_{\beta} N$ for PLFA

```
upperbound : ∀ {Γ} → {M N : Γ ⊢ *}

→ M → N

upperbound {_} {M → }

upperbound {_} {M → }

(ζ φ) = abs-cong (upperbound φ)

upperbound {_} {(`_) · _} {_} {(ζ φ) = appR-cong (upperbound φ)

upperbound {_} {(M__) · M} {((M__) · M)} (ξ_1 (ζ φ)) = _ → ⟨ β ⟩ rew-rew (upperbound φ) (extensive M)

upperbound {_} {(M__) · M} {(((M__) · M))} (ξ_2 φ) = _ → ⟨ β ⟩ rew-rew (extensive L) (upperbound φ)

upperbound {_} {(M__L) · _} {.((M__L) · _)} (ξ_2 φ) = _ → ⟨ β ⟩ rew-rew (extensive L) (upperbound φ)

upperbound {_} {(M__L) · _} {.((M__L) · _)} (ξ_2 φ) = _ → ⟨ β ⟩ rew-rew (extensive L) (upperbound φ)

upperbound {_} {(M__L) · _} {.((M__L) · _)} (ξ_2 φ) = app-cong (upperbound φ) (extensive M)

upperbound {_} {(M__L) · _} {.(. · M)} (ξ_1 φ) = app-cong (extensive (K · L)) (upperbound φ)
```

Remark

recursion on $M \rightarrow_{\beta} N$ (ζ, ξ_1, ξ_2 traditional names of compatibility clauses) otherwise only (extensive) and compatibility

(Right-hand side) $(M^{\bullet})^{\sigma^{\bullet}} \twoheadrightarrow (M^{\sigma})^{\bullet}$ for PLFA

```
rhss : \forall \{ \Gamma \Delta \} (M : \Gamma \vdash \star) {\sigma \tau : Subst \Gamma \Delta \} \rightarrow ((x : \Gamma \ni \star) \rightarrow \tau x \equiv \sigma x \bullet)
  \rightarrow subst \tau (M \bullet) \longrightarrow (subst \sigma M)•
rhss (' x) eq rewrite (eq x) = \blacksquare
rhss (\lambda M) eq = abs-cong (rhss M (exts-bullet eq))
(appR-cong (rhss M eq)) (app-bullet (\sigma x) (subst \sigma M)) where
  {- auxiliary rhs/monotonicity lemma for application -}
     app-bullet : \forall \{ \Gamma \} (LM : \Gamma \vdash \star) \rightarrow L \bullet \cdot M \bullet \longrightarrow (L \cdot M) \bullet
     app-bullet (') =
     app-bullet (\lambda) = ( \longrightarrow \langle \beta \rangle =)
     app-bullet (\cdot) = \blacksquare
rhss ((\land L) \cdot M) {\tau = \tau} eq rewrite (sym (subst-commute {N = L \cdot} {M \cdot} {\tau})) =
  rew-rew (rhss L (exts-bullet eq)) (rhss M eq)
rhss (K \cdot L \cdot M) eq = app-conq (rhss (K \cdot L) eq) (rhss M eq)
```

(Right-hand side) $(M^{\bullet})^{\sigma^{\bullet}} \twoheadrightarrow (M^{\sigma})^{\bullet}$ for PLFA

```
rhss : \forall \{ \Gamma \Delta \} (M : \Gamma \vdash \star) \{ \sigma \tau : \text{Subst } \Gamma \Delta \} \rightarrow ((x : \Gamma \ni \star) \rightarrow \tau x \equiv \sigma x \bullet)
  \rightarrow subst \tau (M \bullet) —\rightarrow (subst \sigma M)•
rhss (' x) eq rewrite (eq x) = \blacksquare
rhss (\lambda M) eq = abs-cong (rhss M (exts-bullet eq))
(appR-cong (rhss M eq)) (app-bullet (\sigma x) (subst \sigma M)) where
  {- auxiliary rhs/monotonicity lemma for application -}
     app-bullet : \forall \{ \Gamma \} (LM : \Gamma \vdash \star) \rightarrow L \bullet \cdot M \bullet \longrightarrow (L \cdot M) \bullet
     app-bullet (') =
     app-bullet (\lambda) = ( \longrightarrow \langle \beta \rangle ()
     app-bullet ( · ) =
rhss ((\lambda L) \cdot M) {\tau = \tau} eq rewrite (sym (subst-commute {N = L \cdot} {M \cdot} {\tau})) =
  rew-rew (rhss L (exts-bullet eq)) (rhss M eq)
rhss (K \cdot L \cdot M) eq = app-conq (rhss (K \cdot L) eq) (rhss M eq)
```

Remark

recursion on scoped nameless $M : \Gamma \vdash \star (\sigma, \tau \text{ are parallel substitutions})$

UNIVERSITY of SUSSEX IWC, Tallinn, Estonia July 9th 2024

(Monotonic) $M^{\bullet} \twoheadrightarrow_{\beta} N^{\bullet}$ if $M \rightarrow_{\beta} N$ for PLFA

```
monotonic : \forall \{ \Gamma \} \rightarrow \{ M N : \Gamma \vdash \star \}
  \rightarrow M \longrightarrow N
      ____
  \rightarrow M \bullet \longrightarrow M \bullet
monotonic (\zeta \phi) = abs-cong (monotonic \phi)
monotonic { } {(') · } {((') · } (\xi_2 \phi) = appR-cong (monotonic \phi)
monotonic \{\Gamma\} \{(\lambda M) \cdot N\} \{(subst (subst-zero N) M)\} \beta = rhss M bullet-zero where
  {- bullet commutes with lifting terms to substitutions -}
  bullet-zero : (x : \Gamma, \star \ni \star) \rightarrow \text{subst-zero} (N \bullet) x \equiv \text{subst-zero} N x \bullet
  hullet-zero 7 = refl
  bullet-zero (S x) = refl
monotonic { } {(\lambda) · } {(\lambda) · } {(\xi_1 (\zeta \phi)) = rew-rew (monotonic \phi) (
monotonic \{ \} \{(\mathcal{M}, M) \cdot \} \{((\mathcal{M}, M) \cdot )\} (\xi_2, \phi) = \text{rew-rew} (M \cdot \blacksquare) (\text{monotonic } \phi)
monotonic { } { · · · } {(( ) · } (\xi_1 \phi) = appL-cong (monotonic \phi)
monotonic { } { · · · } { · · · } (\xi_1 \phi) = appL-cong (monotonic \phi)
monotonic {_} {_ · _ · _} {_ · _ · _} (\xi_2 \phi) = appR-cong (monotonic \phi)
```

UNIVERSITY OF SUSSEX IWC, Tallinn, Estonia July 9th 2024

Conclusions

• 4 key properties 65 loc

induction on scoped nameless λ -term		induction on derivations
(extensive)	\implies	(upperbound)
(right-hand side)	\implies	(monotonic)

- nameless = uninamed; scopes are stacks (Hendriks & \$\$ 03; not lists)
- basic term rewrite theory of $\lambda\beta$ in PLFA is incomplete (no signature; does not show it's a ho-term rewrite system, no sub)
- section on confluence of $\lambda\beta$ in PLFA is suboptimal (shorter proof via Z; the notes attributing are incorrect / improper)

Questions

• single proof instantiating to full development, full superdevelopment maps?

Remark

full superdevelopment map • contracting β -redex-patterns in inside–out sweep (Aczel 80s; van Raamsdonk 90s, Dehornoy & $\forall 00s$)

Questions

• single proof instantiating to full development, full superdevelopment maps?

$$\begin{array}{rcl} \text{if } a \to_{\beta} b \text{ then } b \twoheadrightarrow_{\beta} a^{\bullet} \twoheadrightarrow_{\beta} b^{\bullet} \text{ (Z; Dehornoy \& $$\ensuremath{\$}08$), where} \\ & x^{\bullet} & := & x \\ & (\lambda x.M)^{\bullet} & := & \lambda x.M^{\bullet} \\ & (MN)^{\bullet} & := & M'[x:=N^{\bullet}] & \text{ if } M^{\bullet} = \lambda x.M' \\ & & := & M^{\bullet}N^{\bullet} & \text{ otherwise} \end{array}$$

Questions

- single proof instantiating to full development, full superdevelopment maps?
- avoid duplicates of substitution lemmata in PLFA? (for reindexing)

Questions

- single proof instantiating to full development, full superdevelopment maps?
- avoid duplicates of substitution lemmata in PLFA?

by working with generalised scoped λ -terms (instead of separate indices)

Remark

generalised scoped $\lambda\text{-terms}$ due to Bird & Paterson 99, Hendriks & \circledast 02 & van der Looij & Zwitserlood 04

Questions

- single proof instantiating to full development, full superdevelopment maps?
- avoid duplicates of substitution lemmata in PLFA?
- avoid parallel substitution in PLFA? (only single substitution)

Questions

- single proof instantiating to full development, full superdevelopment maps?
- avoid duplicates of substitution lemmata in PLFA?
- avoid parallel substitution in PLFA?

by working with single substitution at a given depth

Remark

analogous to Huet's 94 Coq formalisation (based on 6 axioms); cf. proceedings

Questions

- single proof instantiating to full development, full superdevelopment maps?
- avoid duplicates of substitution lemmata in PLFA?
- avoid parallel substitution in PLFA?
- avoid maximal scope extrusion? (work with minimal scope extrusion)

Remark

analogous to Hendriks & 📽 03; cf. paper in proceedings

Questions

- single proof instantiating to full development, full superdevelopment maps?
- avoid duplicates of substitution lemmata in PLFA?
- avoid parallel substitution in PLFA?
- avoid maximal scope extrusion?

Thanks to

Patrick Dehornoy, Christian Sternagel, Julian Nagele, Bertram Felgenhauer for Z Andrea Laretto 24 for discussing confluence by Z in Agda (for PLFA; ongoing)