
Confluence by Z in Agda for PLFA

Vincent van Oostrom
University of Sussex

vvo@sussex.ac.uk

IWC, Tallinn, Estonia July 9th 2024 0

mailto:vvo@sussex.ac.uk

Pen-and-paper confluence of λβ (cf. Barendregt 84)

Definition (λ-term; Church 32)

A λ-term either is a variable x or an application MN or a λ-abstraction λx.M

λ-terms up to α-congruence induced by λx.M = λy.M[x:=y], for y not in M

Definition (β-reduction)

→β on λ-terms is compatible closure of β-scheme (λx.M)N = M[x:=N]

M[x:=N] the capture-avoiding substitution of N for x in M

Theorem (Church–Rosser)

→β has the Church–Rosser property

⇐⇒ →β is confluent ⇐⇒ ↠β has the diamond property

IWC, Tallinn, Estonia July 9th 2024 1

Pen-and-paper confluence of λβ

Definition (λ-term)

A λ-term either is a variable x or an application MN or a λ-abstraction λx.M

λ-terms up to α-congruence induced by λx.M = λy.M[x:=y], for y not in M

Definition (β-reduction)

→β on λ-terms is compatible closure of β-scheme (λx.M)N = M[x:=N]

M[x:=N] the capture-avoiding substitution of N for x in M

Theorem (Church–Rosser)

→β has the Church–Rosser property

⇐⇒ →β is confluent ⇐⇒ ↠β has the diamond property

IWC, Tallinn, Estonia July 9th 2024 1

Pen-and-paper confluence of λβ

Definition (λ-term)

A λ-term either is a variable x or an application MN or a λ-abstraction λx.M

λ-terms up to α-congruence induced by λx.M = λy.M[x:=y], for y not in M

Definition (β-reduction)

→β on λ-terms is compatible closure of β-scheme (λx.M)N = M[x:=N]

M[x:=N] the capture-avoiding substitution of N for x in M

Theorem (Church–Rosser)

→β has the Church–Rosser property

⇐⇒ →β is confluent ⇐⇒ ↠β has the diamond property

IWC, Tallinn, Estonia July 9th 2024 1

Pen-and-paper confluence of λβ

Definition (λ-term)

A λ-term either is a variable x or an application MN or a λ-abstraction λx.M

λ-terms up to α-congruence induced by λx.M = λy.M[x:=y], for y not in M

Definition (β-reduction)

→β on λ-terms is compatible closure of β-scheme (λx.M)N = M[x:=N]

M[x:=N] the capture-avoiding substitution of N for x in M

Theorem (Church–Rosser)

→β has the Church–Rosser property

⇐⇒ →β is confluent ⇐⇒ ↠β has the diamond property

IWC, Tallinn, Estonia July 9th 2024 1

Pen-and-paper confluence of λβ

Definition (λ-term)

A λ-term either is a variable x or an application MN or a λ-abstraction λx.M

λ-terms up to α-congruence induced by λx.M = λy.M[x:=y], for y not in M

Definition (β-reduction)

→β on λ-terms is compatible closure of β-scheme (λx.M)N = M[x:=N]

M[x:=N] the capture-avoiding substitution of N for x in M

Theorem (Church–Rosser 36)

→β has the Church–Rosser property

⇐⇒ →β is confluent ⇐⇒ ↠β has the diamond property

IWC, Tallinn, Estonia July 9th 2024 1

Pen-and-paper confluence of λβ

Definition (λ-term)

A λ-term either is a variable x or an application MN or a λ-abstraction λx.M

λ-terms up to α-congruence induced by λx.M = λy.M[x:=y], for y not in M

Definition (β-reduction)

→β on λ-terms is compatible closure of β-scheme (λx.M)N = M[x:=N]

M[x:=N] the capture-avoiding substitution of N for x in M

Theorem (Church–Rosser)

→β has the Church–Rosser property

⇐⇒ →β is confluent ⇐⇒ ↠β has the diamond property

IWC, Tallinn, Estonia July 9th 2024 1

Z

Definition (Z-property of → for bullet-function • on objects)

a b

b•a•

Lemma (Z =⇒ strip =⇒ confluence)

IWC, Tallinn, Estonia July 9th 2024 2

Z

Definition (Z-property of → for •; Loader 98, Dehornoy & 08)

for every step a→ b

(upperbound) b ↠ a•

(monotonic) a• ↠ b•

Lemma (Z =⇒ strip =⇒ confluence)

IWC, Tallinn, Estonia July 9th 2024 2

Z

Definition (Z-property of → for •)

monotonic

upperbound

a b

b•a•

Lemma (Z =⇒ strip =⇒ confluence)

IWC, Tallinn, Estonia July 9th 2024 2

Z

Definition (Z-property of → for •)

for every step a→ b, both b ↠ a• (ub) and a• ↠ b• (mon)

Lemma (Z =⇒ strip =⇒ confluence (Barendregt 84))

strip

IWC, Tallinn, Estonia July 9th 2024 2

Z

Definition (Z-property of → for •)

for every step a→ b, both b ↠ a• (ub) and a• ↠ b• (mon)

Lemma (Z =⇒ strip =⇒ confluence)

a′

a b

IWC, Tallinn, Estonia July 9th 2024 2

Z

Definition (Z-property of → for •)

for every step a→ b, both b ↠ a• (ub) and a• ↠ b• (mon)

Lemma (Z =⇒ strip =⇒ confluence)

ub

a b

a′ a•

IWC, Tallinn, Estonia July 9th 2024 2

Z

Definition (Z-property of → for •)

for every step a→ b, both b ↠ a• (ub) and a• ↠ b• (mon)

Lemma (Z =⇒ strip =⇒ confluence)

b•

a b

a′ a•

Z

IWC, Tallinn, Estonia July 9th 2024 2

Z

Definition (Z-property of → for •)

for every step a→ b, both b ↠ a• (ub) and a• ↠ b• (mon)

Lemma (Z =⇒ strip =⇒ confluence)

Z

IWC, Tallinn, Estonia July 9th 2024 2

Z

Definition (Z-property of → for •)

for every step a→ b, both b ↠ a• (ub) and a• ↠ b• (mon)

Lemma (Z =⇒ strip =⇒ confluence)

Z

IWC, Tallinn, Estonia July 9th 2024 2

Z

Definition (Z-property of → for •)

for every step a→ b, both b ↠ a• (ub) and a• ↠ b• (mon)

Lemma (Z =⇒ strip =⇒ confluence)

Z

IWC, Tallinn, Estonia July 9th 2024 2

Z

Definition (Z-property of → for •)

for every step a→ b, both b ↠ a• (ub) and a• ↠ b• (mon)

Lemma (Z =⇒ strip =⇒ confluence)

ZZ

IWC, Tallinn, Estonia July 9th 2024 2

Z

Definition (Z-property of → for •)

for every step a→ b, both b ↠ a• (ub) and a• ↠ b• (mon)

Lemma (Z =⇒ strip =⇒ confluence)

strip

IWC, Tallinn, Estonia July 9th 2024 2

Z for λβ

Theorem (Loader 98)

for every step a→β b, both b ↠β a• (ub) and a• ↠β b• (mon), where

x• := x

(λx.M)• := λx.M•

((λx.M)N)• := M•[x:=N•]

(MN)• := M• N• otherwise (if M = x or M = PQ)

Remark

full development map • contracting all β-redex-patterns in λ-term
(Church–Rosser 30s; Gross–Knuth, preprint 70s; Takahashi, Loader 90s)

IWC, Tallinn, Estonia July 9th 2024 3

Z for λβ

Theorem (Loader 98)

for every step a→β b, both b ↠β a• (ub) and a• ↠β b• (mon), where

x• := x

(λx.M)• := λx.M•

((λx.M)N)• := M•[x:=N•]

(MN)• := M• N• otherwise

Remark

full development map • contracting all β-redex-patterns in λ-term
(Church–Rosser 30s; Gross–Knuth, preprint 70s; Takahashi, Loader 90s)

IWC, Tallinn, Estonia July 9th 2024 3

Z for λβ proof

β

β

β
M N

N•M•

Proof.

(ub) and (mon) by induction on M→β N

(extensive) M ↠β M•

(ctx,sub) if M ↠β N and P ↠β Q, then M[x:=P] ↠β N[y:=Q]

(right-hand side) M•[x:=N•] ↠β M[x:=N]•

(ext),(rhs),(ctx) by induction on M; (sub) by induction on M→β N

IWC, Tallinn, Estonia July 9th 2024 4

Z for λβ proof

monotonic

upperbound
β

M N

N•M•

Proof.

(ub) and (mon) by induction on M→β N

(extensive) M ↠β M•

(ctx,sub) if M ↠β N and P ↠β Q, then M[x:=P] ↠β N[y:=Q]

(right-hand side) M•[x:=N•] ↠β M[x:=N]•

(ext),(rhs),(ctx) by induction on M; (sub) by induction on M→β N

IWC, Tallinn, Estonia July 9th 2024 4

Z for λβ proof

monotonic

upperbound
β

(λx.M)N M[x:=N]

M[x:=N]•M•[x:=N•]

Proof.

(ub) and (mon) by induction on M→β N with base case β

(extensive) M ↠β M•

(ctx,sub) if M ↠β N and P ↠β Q, then M[x:=P] ↠β N[y:=Q]

(right-hand side) M•[x:=N•] ↠β M[x:=N]•

(ext),(rhs),(ctx) by induction on M; (sub) by induction on M→β N

IWC, Tallinn, Estonia July 9th 2024 4

Z for λβ proof

right-hand side

extensive & term rewrite system
β

(λx.M)N M[x:=N]

M[x:=N]•M•[x:=N•]

Proof.

(ub) and (mon) by induction on M→β N with base case β, using:

(extensive) M ↠β M•

(ctx,sub) if M ↠β N and P ↠β Q, then M[x:=P] ↠β N[y:=Q]

(right-hand side) M•[x:=N•] ↠β M[x:=N]•

(ext),(rhs),(ctx) by induction on M; (sub) by induction on M→β N

IWC, Tallinn, Estonia July 9th 2024 4

Z for λβ proof

right-hand side

extensive & term rewrite system
β

(λx.M)N M[x:=N]

M[x:=N]•M•[x:=N•]

Proof.

(ub) and (mon) by induction on M→β N with base case β, using:

(extensive) M ↠β M•

(ctx,sub) if M ↠β N and P ↠β Q, then M[x:=P] ↠β N[y:=Q]

(right-hand side) M•[x:=N•] ↠β M[x:=N]•

(ext),(rhs),(ctx) by induction on M; (sub) by induction on M→β N

IWC, Tallinn, Estonia July 9th 2024 4

Substitution lemma

Lemma (β-critical peak)

((λx.M)N)[y:=Q] β← (λy.(λx.M)N)Q→β (λy.M[x:=N])Q is single-step joinable

Proof.

((λx.M)N)[y:=Q] = (λx.M[y:=Q])N[y:=Q]→β

M[y:=Q][x:=N[y:=Q]] =SL M[x:=N][y:=Q] β← (λy.M[x:=N])Q

Remark

closure of→β under substitution (sub) ⇐⇒ β-critical peak lemma ⇐⇒ SL
proof of (rhs) uses substitution lemma
β-redexes do have overlap

IWC, Tallinn, Estonia July 9th 2024 5

Substitution lemma

Lemma (β-critical peak)

((λx.M)N)[y:=Q] β← (λy.(λx.M)N)Q→β (λy.M[x:=N])Q is single-step joinable

Proof.

((λx.M)N)[y:=Q] = (λx.M[y:=Q])N[y:=Q]→β

M[y:=Q][x:=N[y:=Q]] =SL M[x:=N][y:=Q] β← (λy.M[x:=N])Q

Remark

closure of→β under substitution (sub) ⇐⇒ β-critical peak lemma ⇐⇒ SL
proof of (rhs) uses substitution lemma
β-redexes do have overlap

IWC, Tallinn, Estonia July 9th 2024 5

Substitution lemma

Lemma (β-critical peak)

((λx.M)N)[y:=Q] β← (λy.(λx.M)N)Q→β (λy.M[x:=N])Q is single-step joinable

Proof.

((λx.M)N)[y:=Q] = (λx.M[y:=Q])N[y:=Q]→β

M[y:=Q][x:=N[y:=Q]] =SL M[x:=N][y:=Q] β← (λy.M[x:=N])Q

Remark

closure of→β under substitution (sub) ⇐⇒ β-critical peak lemma ⇐⇒ SL

proof of (rhs) uses substitution lemma
β-redexes do have overlap

IWC, Tallinn, Estonia July 9th 2024 5

Substitution lemma

Lemma (β-critical peak)

((λx.M)N)[y:=Q] β← (λy.(λx.M)N)Q→β (λy.M[x:=N])Q is single-step joinable

Proof.

((λx.M)N)[y:=Q] = (λx.M[y:=Q])N[y:=Q]→β

M[y:=Q][x:=N[y:=Q]] =SL M[x:=N][y:=Q] β← (λy.M[x:=N])Q

Remark

closure of→β under substitution (sub) ⇐⇒ β-critical peak lemma ⇐⇒ SL
proof of (rhs) uses substitution lemma

β-redexes do have overlap

IWC, Tallinn, Estonia July 9th 2024 5

Substitution lemma

Lemma (β-critical peak)

((λx.M)N)[y:=Q] β← (λy.(λx.M)N)Q→β (λy.M[x:=N])Q is single-step joinable

Proof.

((λx.M)N)[y:=Q] = (λx.M[y:=Q])N[y:=Q]→β

M[y:=Q][x:=N[y:=Q]] =SL M[x:=N][y:=Q] β← (λy.M[x:=N])Q

Remark

closure of→β under substitution (sub) ⇐⇒ β-critical peak lemma ⇐⇒ SL
proof of (rhs) uses substitution lemma
β-redexes do have overlap (redex-patterns do not)

IWC, Tallinn, Estonia July 9th 2024 5

Substitution lemma

Lemma (β-critical peak)

((λx.M)N)[y:=Q] β← (λy.(λx.M)N)Q→β (λy.M[x:=N])Q is single-step joinable

Proof.

((λx.M)N)[y:=Q] = (λx.M[y:=Q])N[y:=Q]→β

M[y:=Q][x:=N[y:=Q]] =SL M[x:=N][y:=Q] β← (λy.M[x:=N])Q

Remark

closure of→β under substitution (sub) ⇐⇒ β-critical peak lemma ⇐⇒ SL
proof of (rhs) uses substitution lemma
β-redexes do have overlap; SL needed to have term rewrite system

IWC, Tallinn, Estonia July 9th 2024 5

Formalisation of confluence by Z for λβ

Motivation

confluence of λβ-calculus PL-litmus test for proof assistants
(inductive λ-terms and β-steps, binding, substitution, modulo α)

claim: Z gives shortest proof of confluence of λβ

here: test claim in Agda

design decision: adapt extant PLFA proof (by triangle property

also means have to stick with design decisions of PLFA

IWC, Tallinn, Estonia July 9th 2024 6

Formalisation of confluence by Z for λβ

Motivation

confluence of λβ-calculus PL-litmus test for proof assistants

claim: Z gives shortest proof of confluence of λβ

here: test claim in Agda

design decision: adapt extant PLFA proof (by triangle property

also means have to stick with design decisions of PLFA

IWC, Tallinn, Estonia July 9th 2024 6

Formalisation of confluence by Z for λβ in Agda

Motivation

confluence of λβ-calculus PL-litmus test for proof assistants

claim: Z gives shortest proof of confluence of λβ

here: test claim in Agda; had wanted to learn some Agda for some time
(done in 2021; learned at IWC 2023 of Andrea Laretto’s MSc thesis)

design decision: adapt extant PLFA proof (by triangle property

also means have to stick with design decisions of PLFA

IWC, Tallinn, Estonia July 9th 2024 6

Formalisation of confluence by Z in Agda based on PLFA

Motivation

confluence of λβ-calculus PL-litmus test for proof assistants

claim: Z gives shortest proof of confluence of λβ

here: test claim in Agda

design decision: adapt extant PLFA proof (by triangle property; Takahashi 95)
(Programming Language Foundations in Agda by Wadler, Kokke, Siek 20
adaptation allowed reuse of inductive λ-terms, β-steps and SL
reuse good software engineering and useful since absolute Agda beginner)

also means have to stick with design decisions of PLFA

IWC, Tallinn, Estonia July 9th 2024 6

Formalisation of confluence by Z in Agda based on PLFA

Motivation

confluence of λβ-calculus PL-litmus test for proof assistants

claim: Z gives shortest proof of confluence of λβ

here: test claim in Agda

design decision: adapt extant PLFA proof (by triangle property

also means have to stick with design decisions of PLFA

IWC, Tallinn, Estonia July 9th 2024 6

λ-terms in PLFA

Definition (Nameless λ-term; de Bruijn 72)

PLFA design decision: scoped nameless λ-terms
(avoids α-renaming at the expense of re-indexing)

Definition (Scoped λ-term)

i ⊢ t is nameless λ-term t in scope i

Remark

these are generalised nameless λ-terms (Bird & Paterson 99; Hendriks & 03)
PLFA only allows S on 0 and on other Ss; nameless λ-terms; no ho-signature

IWC, Tallinn, Estonia July 9th 2024 7

λ-terms in PLFA

Definition (Nameless λ-term)

PLFA design decision: scoped nameless λ-terms

2: named λx.λy.x (x y), nameless λλS0 ((S0)0), scoped 0 ⊢ λλS0 ((S0)0)

Definition (Scoped λ-term)

i ⊢ t is nameless λ-term t in scope i

Remark

these are generalised nameless λ-terms (Bird & Paterson 99; Hendriks & 03)
PLFA only allows S on 0 and on other Ss; nameless λ-terms; no ho-signature

IWC, Tallinn, Estonia July 9th 2024 7

λ-terms in PLFA

Definition (Nameless λ-term)

PLFA design decision: scoped nameless λ-terms

Definition (Scoped λ-term; & van der Looij & Zwitserlood 04??)

i ⊢ t is nameless λ-term t in scope i
(think of i as binding-stack with t closed within it; i is upperbound on indices in t)

Remark

these are generalised nameless λ-terms (Bird & Paterson 99; Hendriks & 03)
PLFA only allows S on 0 and on other Ss; nameless λ-terms; no ho-signature

IWC, Tallinn, Estonia July 9th 2024 7

λ-terms in PLFA

Definition (Nameless λ-term)

PLFA design decision: scoped nameless λ-terms

Definition (Scoped λ-term)

i ⊢ t is nameless λ-term t in scope i (bottom–up) inductively derivable by:

Remark

these are generalised nameless λ-terms (Bird & Paterson 99; Hendriks & 03)
PLFA only allows S on 0 and on other Ss; nameless λ-terms; no ho-signature

IWC, Tallinn, Estonia July 9th 2024 7

λ-terms in PLFA

Definition (Nameless λ-term)

PLFA design decision: scoped nameless λ-terms

Definition (Scoped λ-term)

i ⊢ t is nameless λ-term t in scope i

Remark

these are generalised nameless λ-terms (Bird & Paterson 99; Hendriks & 03)
PLFA only allows S on 0 and on other Ss; nameless λ-terms; no ho-signature

IWC, Tallinn, Estonia July 9th 2024 7

→β-steps in PLFA

Definition (Nameless β-reduction)

PLFA design decision: single substitution t[s] by parallel substitution 0 7→ s,Si 7→ i
(substitute s for the free 0s in t; decrement other indices)

Lemma (λβ is a ho-term rewriting system; in PLFA)

(ctx,sub) closure of reduction under contexts,substitutions

(substitution lemma) for single substitution via parallel substitution

Remark

(ctx) is called congruence in PLFA; (sub) missing from PLFA; (substitution lemma)
is called commutation in PLFA

IWC, Tallinn, Estonia July 9th 2024 8

→β-steps in PLFA

Definition (Nameless β-reduction)

PLFA design decision: single substitution t[s] by parallel substitution 0 7→ s,Si 7→ i
→β on nameless λ-terms is compatible closure of β-scheme i ⊢ (λt) s = i ⊢ t[s]

Lemma (λβ is a ho-term rewriting system; in PLFA)

(ctx,sub) closure of reduction under contexts,substitutions

(substitution lemma) for single substitution via parallel substitution

Remark

(ctx) is called congruence in PLFA; (sub) missing from PLFA; (substitution lemma)
is called commutation in PLFA

IWC, Tallinn, Estonia July 9th 2024 8

→β-steps in PLFA

Definition (Nameless β-reduction)

PLFA design decision: single substitution t[s] by parallel substitution 0 7→ s,Si 7→ i
→β on nameless λ-terms is compatible closure of β-scheme i ⊢ (λt) s = i ⊢ t[s]

0 ⊢ 2 2→β 0 ⊢ (λS0 ((S0)0))[2] = 0 ⊢ λS2 ((S2)0) = 0 ⊢ λ2 (2 0)

Lemma (λβ is a ho-term rewriting system; in PLFA)

(ctx,sub) closure of reduction under contexts,substitutions

(substitution lemma) for single substitution via parallel substitution

Remark

(ctx) is called congruence in PLFA; (sub) missing from PLFA; (substitution lemma)
is called commutation in PLFA

IWC, Tallinn, Estonia July 9th 2024 8

→β-steps in PLFA

Definition (Nameless β-reduction)

PLFA design decision: single substitution t[s] by parallel substitution 0 7→ s,Si 7→ i
→β on nameless λ-terms is compatible closure of β-scheme i ⊢ (λt) s = i ⊢ t[s]

Lemma (λβ is a ho-term rewriting system; in PLFA)

(ctx,sub) closure of reduction under contexts,substitutions

(substitution lemma) for single substitution via parallel substitution

Remark

(ctx) is called congruence in PLFA; (sub) missing from PLFA; (substitution lemma)
is called commutation in PLFA

IWC, Tallinn, Estonia July 9th 2024 8

→β-steps in PLFA

Definition (Nameless β-reduction)

PLFA design decision: single substitution t[s] by parallel substitution 0 7→ s,Si 7→ i
→β on nameless λ-terms is compatible closure of β-scheme i ⊢ (λt) s = i ⊢ t[s]

Lemma (λβ is a ho-term rewriting system; in PLFA)

(ctx,sub) closure of reduction under contexts,substitutions

(substitution lemma) for single substitution via parallel substitution

Remark

(ctx) is called congruence in PLFA (wrong; compatible)

; (sub) missing from PLFA;
(substitution lemma) is called commutation in PLFA

IWC, Tallinn, Estonia July 9th 2024 8

→β-steps in PLFA

Definition (Nameless β-reduction)

PLFA design decision: single substitution t[s] by parallel substitution 0 7→ s,Si 7→ i
→β on nameless λ-terms is compatible closure of β-scheme i ⊢ (λt) s = i ⊢ t[s]

Lemma (λβ is a ho-term rewriting system; in PLFA)

(ctx,sub) closure of reduction under contexts,substitutions

(substitution lemma) for single substitution via parallel substitution

Remark

(ctx) is called congruence in PLFA; (sub) missing from PLFA (50 loc)

; (substitution
lemma) is called commutation in PLFA

IWC, Tallinn, Estonia July 9th 2024 8

→β-steps in PLFA

Definition (Nameless β-reduction)

PLFA design decision: single substitution t[s] by parallel substitution 0 7→ s,Si 7→ i
→β on nameless λ-terms is compatible closure of β-scheme i ⊢ (λt) s = i ⊢ t[s]

Lemma (λβ is a ho-term rewriting system; in PLFA)

(ctx,sub) closure of reduction under contexts,substitutions

(substitution lemma) for single substitution via parallel substitution

Remark

(ctx) is called congruence in PLFA; (sub) missing from PLFA; (substitution lemma)
is called commutation in PLFA (wrong; self-distributivity / associativity)

IWC, Tallinn, Estonia July 9th 2024 8

→β-steps in PLFA

Definition (Nameless β-reduction)

PLFA design decision: single substitution t[s] by parallel substitution 0 7→ s,Si 7→ i
→β on nameless λ-terms is compatible closure of β-scheme i ⊢ (λt) s = i ⊢ t[s]

Lemma (λβ is a ho-term rewriting system; in PLFA)

(ctx,sub) closure of reduction under contexts,substitutions

(substitution lemma) for single substitution via parallel substitution

Remark

(ctx) is called congruence in PLFA; (sub) missing from PLFA; (substitution lemma)
is called commutation in PLFA; terms / steps ad hoc (no signature)

IWC, Tallinn, Estonia July 9th 2024 8

Basic rewriting and full development map • for PLFA

app-cong : ∀{Γ} {K L M N : Γ ⊢ ⋆} → K —↠ L → M —↠ N → K · M —↠ L · N
rew-rew : ∀{Γ} {M N : Γ , ⋆ ⊢ ⋆ } {K L : Γ ⊢ ⋆ }

→ M —↠ N
→ K —↠ L

→ M [K] —↠ N [L]

Remark

{. . .} indicates implicit argument; Γ is scope; ⋆ is singleton type of λ-terms
app-cong function taking reductions K ↠β L and K ↠β L yielding K M ↠β LN
rew-rew same but yielding closure under contexts,substitutions

_• : ∀ {Γ A} → Γ ⊢ A → Γ ⊢ A
(‘ x)• = ‘ x
(λλ M)• = λλ (M •)
((λλ M) · N)• = M • [N •]
(M · N)• = (M •) ·(N •)

prime indicates index (as λ-term)

IWC, Tallinn, Estonia July 9th 2024 9

Basic rewriting and full development map • for PLFA

app-cong : ∀{Γ} {K L M N : Γ ⊢ ⋆} → K —↠ L → M —↠ N → K · M —↠ L · N
rew-rew : ∀{Γ} {M N : Γ , ⋆ ⊢ ⋆ } {K L : Γ ⊢ ⋆ }

→ M —↠ N
→ K —↠ L

→ M [K] —↠ N [L]

_• : ∀ {Γ A} → Γ ⊢ A → Γ ⊢ A
(‘ x)• = ‘ x
(λλ M)• = λλ (M •)
((λλ M) · N)• = M • [N •]
(M · N)• = (M •) ·(N •)

prime indicates index (as λ-term)

IWC, Tallinn, Estonia July 9th 2024 9

(Extensive) M ↠ M• for PLFA

extensive : ∀ {Γ A} → (M : Γ ⊢ A) → M —↠ M •
extensive (‘ _) = _ ■

extensive (λλ M) = abs-cong (extensive M)
extensive ((λλ M) · N) = _ —→〈 β 〉 rew-rew (extensive M) (extensive N)
extensive (‘ _ · N) = appR-cong (extensive N)
extensive (L · M · N) = app-cong (extensive (L · M)) (extensive N)

Remark

recursion on scoped nameless M : Γ ⊢ A (■ is empty reduction)
otherwise only compatibility (wrongly named congruence in PLFA)

IWC, Tallinn, Estonia July 9th 2024 10

(Extensive) M ↠ M• for PLFA

extensive : ∀ {Γ A} → (M : Γ ⊢ A) → M —↠ M •
extensive (‘ _) = _ ■

extensive (λλ M) = abs-cong (extensive M)
extensive ((λλ M) · N) = _ —→〈 β 〉 rew-rew (extensive M) (extensive N)
extensive (‘ _ · N) = appR-cong (extensive N)
extensive (L · M · N) = app-cong (extensive (L · M)) (extensive N)

Remark

recursion on scoped nameless M : Γ ⊢ A (■ is empty reduction)
otherwise only compatibility (wrongly named congruence in PLFA)

IWC, Tallinn, Estonia July 9th 2024 10

(Upperbound) N ↠ M• if M→β N for PLFA

upperbound : ∀ {Γ} → {M N : Γ ⊢ ⋆}
→ M —→ N

→ N —↠ M •
upperbound {_} {λλ _} (ζ ϕ) = abs-cong (upperbound ϕ)
upperbound {_} {(‘ _) · _} {_} (ξ2 ϕ) = appR-cong (upperbound ϕ)
upperbound {_} {(λλ _) · M} {((λλ _) · M)} (ξ1 (ζ ϕ)) = _ —→〈 β 〉 rew-rew (upperbound ϕ) (extensive M)
upperbound {_} {(λλ L) · _} {.((λλ L) · _)} (ξ2 ϕ) = _ —→〈 β 〉 rew-rew (extensive L) (upperbound ϕ)
upperbound {_} {(λλ L) · M} {.(subst (subst-zero M) L)} β = rew-rew (extensive L) (extensive M)
upperbound {_} {_ · _ · M} {.(_ · M)} (ξ1 ϕ) = app-cong (upperbound ϕ) (extensive M)
upperbound {_} {K · L · _} {.(_ · _ · _)} (ξ2 ϕ) = app-cong (extensive (K · L)) (upperbound ϕ)

Remark

recursion on M→β N (ζ,ξ1,ξ2 traditional names of compatibility clauses)
otherwise only (extensive) and compatibility

IWC, Tallinn, Estonia July 9th 2024 11

(Upperbound) N ↠ M• if M→β N for PLFA

upperbound : ∀ {Γ} → {M N : Γ ⊢ ⋆}
→ M —→ N

→ N —↠ M •
upperbound {_} {λλ _} (ζ ϕ) = abs-cong (upperbound ϕ)
upperbound {_} {(‘ _) · _} {_} (ξ2 ϕ) = appR-cong (upperbound ϕ)
upperbound {_} {(λλ _) · M} {((λλ _) · M)} (ξ1 (ζ ϕ)) = _ —→〈 β 〉 rew-rew (upperbound ϕ) (extensive M)
upperbound {_} {(λλ L) · _} {.((λλ L) · _)} (ξ2 ϕ) = _ —→〈 β 〉 rew-rew (extensive L) (upperbound ϕ)
upperbound {_} {(λλ L) · M} {.(subst (subst-zero M) L)} β = rew-rew (extensive L) (extensive M)
upperbound {_} {_ · _ · M} {.(_ · M)} (ξ1 ϕ) = app-cong (upperbound ϕ) (extensive M)
upperbound {_} {K · L · _} {.(_ · _ · _)} (ξ2 ϕ) = app-cong (extensive (K · L)) (upperbound ϕ)

Remark

recursion on M→β N (ζ,ξ1,ξ2 traditional names of compatibility clauses)
otherwise only (extensive) and compatibility

IWC, Tallinn, Estonia July 9th 2024 11

(Right-hand side) (M•)σ
•
↠ (Mσ)• for PLFA

rhss : ∀{Γ ∆} (M : Γ ⊢ ⋆) {σ τ : Subst Γ ∆} → ((x : Γ ∋ ⋆) → τ x ≡ σ x •)

→ subst τ (M •) —↠ (subst σ M)•
rhss (‘ x) eq rewrite (eq x) = _ ■

rhss (λλ M) eq = abs-cong (rhss M (exts-bullet eq))
rhss ((‘ x) · M) {σ} eq rewrite (eq x) = —↠-trans

(appR-cong (rhss M eq)) (app-bullet (σ x) (subst σ M)) where
{- auxiliary rhs/monotonicity lemma for application -}

app-bullet : ∀{Γ} (L M : Γ ⊢ ⋆) → L • · M • —↠ (L · M)•
app-bullet (‘ _) _ = _ ■

app-bullet (λλ _) _ = (_ —→〈 β 〉 _ ■)
app-bullet (_ · _) _ = _ ■

rhss ((λλ L) · M) {τ = τ} eq rewrite (sym (subst-commute {N = L •} {M •} {τ})) =
rew-rew (rhss L (exts-bullet eq)) (rhss M eq)

rhss (K · L · M) eq = app-cong (rhss (K · L) eq) (rhss M eq)

Remark

recursion on scoped nameless M : Γ ⊢ ⋆ (σ, τ are parallel substitutions)

IWC, Tallinn, Estonia July 9th 2024 12

(Right-hand side) (M•)σ
•
↠ (Mσ)• for PLFA

rhss : ∀{Γ ∆} (M : Γ ⊢ ⋆) {σ τ : Subst Γ ∆} → ((x : Γ ∋ ⋆) → τ x ≡ σ x •)

→ subst τ (M •) —↠ (subst σ M)•
rhss (‘ x) eq rewrite (eq x) = _ ■

rhss (λλ M) eq = abs-cong (rhss M (exts-bullet eq))
rhss ((‘ x) · M) {σ} eq rewrite (eq x) = —↠-trans

(appR-cong (rhss M eq)) (app-bullet (σ x) (subst σ M)) where
{- auxiliary rhs/monotonicity lemma for application -}

app-bullet : ∀{Γ} (L M : Γ ⊢ ⋆) → L • · M • —↠ (L · M)•
app-bullet (‘ _) _ = _ ■

app-bullet (λλ _) _ = (_ —→〈 β 〉 _ ■)
app-bullet (_ · _) _ = _ ■

rhss ((λλ L) · M) {τ = τ} eq rewrite (sym (subst-commute {N = L •} {M •} {τ})) =
rew-rew (rhss L (exts-bullet eq)) (rhss M eq)

rhss (K · L · M) eq = app-cong (rhss (K · L) eq) (rhss M eq)

Remark

recursion on scoped nameless M : Γ ⊢ ⋆ (σ, τ are parallel substitutions)

IWC, Tallinn, Estonia July 9th 2024 12

(Monotonic) M• ↠β N
• if M→β N for PLFA

monotonic : ∀{Γ} → {M N : Γ ⊢ ⋆}
→ M —→ N

→ M • —↠ N •
monotonic (ζ ϕ) = abs-cong (monotonic ϕ)
monotonic {_} {(‘ _) · _} {(‘ _) · _} (ξ2 ϕ) = appR-cong (monotonic ϕ)
monotonic {Γ} {(λλ M) · N} {.(subst (subst-zero N) M)} β = rhss M bullet-zero where
{- bullet commutes with lifting terms to substitutions -}

bullet-zero : (x : Γ , ⋆ ∋ ⋆) → subst-zero (N •) x ≡ subst-zero N x •
bullet-zero Z = refl
bullet-zero (S x) = refl

monotonic {_} {(λλ _) · _} {(λλ _) · _} (ξ1 (ζ ϕ)) = rew-rew (monotonic ϕ) (_ ■)
monotonic {_} {(λλ M) · _} {.((λλ M) · _)} (ξ2 ϕ) = rew-rew (M • ■) (monotonic ϕ)
monotonic {_} {_ · _ · _} {(λλ _) · _} (ξ1 ϕ) = —↠-trans (appL-cong (monotonic ϕ)) (_ —→〈 β 〉 _ ■)
monotonic {_} {_ · _ · _} {(‘ _) · _} (ξ1 ϕ) = appL-cong (monotonic ϕ)
monotonic {_} {_ · _ · _} {_ · _ · _} (ξ1 ϕ) = appL-cong (monotonic ϕ)
monotonic {_} {_ · _ · _} {_ · _ · _} (ξ2 ϕ) = appR-cong (monotonic ϕ)

IWC, Tallinn, Estonia July 9th 2024 13

Conclusions

• 4 key properties 65 loc

induction on scoped nameless λ-term induction on derivations
(extensive) =⇒ (upperbound)

(right-hand side) =⇒ (monotonic)

• nameless = uninamed; scopes are stacks (Hendriks & 03; not lists)

• basic term rewrite theory of λβ in PLFA is incomplete
(no signature; does not show it’s a ho-term rewrite system, no sub)

• section on confluence of λβ in PLFA is suboptimal
(shorter proof via Z; the notes attributing are incorrect / improper)

IWC, Tallinn, Estonia July 9th 2024 14

Future work

Questions

• single proof instantiating to full development,full superdevelopment maps?

• avoid duplicates of substitution lemmata in PLFA?

• avoid parallel substitution in PLFA?

• avoid maximal scope extrusion?

Remark

full superdevelopment map • contracting β-redex-patterns in inside–out sweep
(Aczel 80s; van Raamsdonk 90s, Dehornoy & 00s)

Thanks to

Patrick Dehornoy, Christian Sternagel, Julian Nagele, Bertram Felgenhauer for Z
Andrea Laretto 24 for discussing confluence by Z in Agda (for PLFA; ongoing)

IWC, Tallinn, Estonia July 9th 2024 15

Future work

Questions

• single proof instantiating to full development,full superdevelopment maps?

if a→β b then b ↠β a• ↠β b• (Z; Dehornoy & 08), where

x• := x

(λx.M)• := λx.M•

(MN)• := M′[x:=N•] if M• = λx.M′

:= M• N• otherwise

• avoid duplicates of substitution lemmata in PLFA?

• avoid parallel substitution in PLFA?

• avoid maximal scope extrusion?

Thanks to

Patrick Dehornoy, Christian Sternagel, Julian Nagele, Bertram Felgenhauer for Z
Andrea Laretto 24 for discussing confluence by Z in Agda (for PLFA; ongoing)

IWC, Tallinn, Estonia July 9th 2024 15

Future work

Questions

• single proof instantiating to full development,full superdevelopment maps?

• avoid duplicates of substitution lemmata in PLFA? (for reindexing)

• avoid parallel substitution in PLFA?

• avoid maximal scope extrusion?

Thanks to

Patrick Dehornoy, Christian Sternagel, Julian Nagele, Bertram Felgenhauer for Z
Andrea Laretto 24 for discussing confluence by Z in Agda (for PLFA; ongoing)

IWC, Tallinn, Estonia July 9th 2024 15

Future work

Questions

• single proof instantiating to full development,full superdevelopment maps?

• avoid duplicates of substitution lemmata in PLFA?

by working with generalised scoped λ-terms (instead of separate indices)

• avoid parallel substitution in PLFA?

• avoid maximal scope extrusion?

Remark

generalised scoped λ-terms due to Bird & Paterson 99, Hendriks & 02 & van
der Looij & Zwitserlood 04

Thanks to

Patrick Dehornoy, Christian Sternagel, Julian Nagele, Bertram Felgenhauer for Z
Andrea Laretto 24 for discussing confluence by Z in Agda (for PLFA; ongoing)

IWC, Tallinn, Estonia July 9th 2024 15

Future work

Questions

• single proof instantiating to full development,full superdevelopment maps?

• avoid duplicates of substitution lemmata in PLFA?

• avoid parallel substitution in PLFA? (only single substitution)

• avoid maximal scope extrusion?

Thanks to

Patrick Dehornoy, Christian Sternagel, Julian Nagele, Bertram Felgenhauer for Z
Andrea Laretto 24 for discussing confluence by Z in Agda (for PLFA; ongoing)

IWC, Tallinn, Estonia July 9th 2024 15

Future work

Questions

• single proof instantiating to full development,full superdevelopment maps?

• avoid duplicates of substitution lemmata in PLFA?

• avoid parallel substitution in PLFA?

by working with single substitution at a given depth

• avoid maximal scope extrusion?

Remark

analogous to Huet’s 94 Coq formalisation (based on 6 axioms); cf. proceedings

Thanks to

Patrick Dehornoy, Christian Sternagel, Julian Nagele, Bertram Felgenhauer for Z
Andrea Laretto 24 for discussing confluence by Z in Agda (for PLFA; ongoing)

IWC, Tallinn, Estonia July 9th 2024 15

Future work

Questions

• single proof instantiating to full development,full superdevelopment maps?

• avoid duplicates of substitution lemmata in PLFA?

• avoid parallel substitution in PLFA?

• avoid maximal scope extrusion? (work with minimal scope extrusion)

Remark

analogous to Hendriks & 03; cf. paper in proceedings

Thanks to

Patrick Dehornoy, Christian Sternagel, Julian Nagele, Bertram Felgenhauer for Z
Andrea Laretto 24 for discussing confluence by Z in Agda (for PLFA; ongoing)

IWC, Tallinn, Estonia July 9th 2024 15

Future work

Questions

• single proof instantiating to full development,full superdevelopment maps?

• avoid duplicates of substitution lemmata in PLFA?

• avoid parallel substitution in PLFA?

• avoid maximal scope extrusion?

Thanks to

Patrick Dehornoy, Christian Sternagel, Julian Nagele, Bertram Felgenhauer for Z
Andrea Laretto 24 for discussing confluence by Z in Agda (for PLFA; ongoing)

IWC, Tallinn, Estonia July 9th 2024 15

