On Non-triviality of the Hierarchy of Decreasing Church-Rosser Abstract Rewriting Systems

levgen Ivanov

IWC 2024

Let us recall:

Definition

An abstract rewriting system (ARS) is a pair (A, \rightarrow) , where

- A is a set
- \rightarrow is a binary relation on A (*reduction*)

Definition

An ARS (A, \rightarrow) is **terminating**, if there is *no* infinite sequence

 $a_1 \rightarrow a_2 \rightarrow a_3 \rightarrow ...$ (where $a_i \in A$)

A variant of formulation of Newman's lemma:

A terminating ARS is confluent if(f) it is locally confluent

Theorem (see footnote 1)

Let (A, \rightarrow) be an ARS that is simultaneously

- countable (the set A is at most countable)
- **2** acyclic (there is no $a \in A$ such that $a \rightarrow^+ a$)
- Strictly inductive (every nonempty chain in the preordered set (A, →*) has a least upper bound).

Then (A, \rightarrow) is confluent iff it is locally confluent.

Note: if one drops any single precondition among 1-3, the above mentioned statement becomes invalid¹:

• Newman's counterexample:

countable + acyclic + inductive (but not strictly inductive)

• Hindley's counterexample:

(at most) countable + strictly inductive (but not acyclic)

• "Strengthened Newman's counterexample" 1:

uncountable + acyclic + strictly inductive

¹I. Ivanov. *On Newman's lemma and non-termination*, CEUR-WS.org vol.3624, pp. 14–24, 2024

3. "Strengthened Newman's counterexample"

- → axis
- example of a reducible element
- example of an irreducible element
- —> example of reduction
- projection of the boundary of a set of direct succesors

Decreasing diagrams

- One can overcome limitations of Newman's lemma using Van Oostrom's decreasing diagrams method ²
- Semi-formally, to prove that an ARS (A, \rightarrow) is confluent:
 - select a set of labels for reduction steps
 - 2 select a well-founded partial order \prec on the set of labels
 - ③ find a labeled version of a (A, →) that satisfies a condition reminiscent to the local confluence, but with special constraints on relations between labels of reduction steps.
- Rigorously this can be formulated using the notion of a decreasing Church-Rosser (DCR¹) ARS
- A set of labels, an order on it, and an assignment of labels to rewrite steps can be thought of as method parameters

²Vincent Van Oostrom. *Confluence by decreasing diagrams*. Theoretical computer science 126, pp. 259–280, 1994

Questions about decreasing diagrams method

- Some general questions (*non-formalized*):
 - are method parameters redundant ?
 - how restrictions imposed on method parameters influence capability of the method to be used to prove confluence ?
- In part, a setting for studying such questions can be formalized using a hierarchy of subclasses of DCR ARS introduced by J. Endrullis, J.W. Klop, R. Overbeek³

 $DCR_0 \subseteq DCR_1 \subseteq DCR_2 \subseteq ...$

- semi-formally, *DCR_α* is the class of confluent ARS for which confluence can be proved with the help of the decreasing diagrams method using
 - a fixed set of labels $\{\beta \mid \beta < \alpha\}$ (ordinals less than α)
 - and a fixed order on them that is a restriction of the usual order on ordinals to {β | β < α}

³J. Endrullis, J.W. Klop, R. Overbeek. *Decreasing diagrams with two labels are complete for confluence of countable systems*, In: FSCD 2018, pp. 14:1–14:15, 2018

Rigorous definition of DCR the hierarchy

Let γ be an ordinal. For any ordinal α denote $\Upsilon \alpha = \{\beta \mid \beta < \alpha\}$

Definition

An ARS (A, \rightarrow) belongs to the class DCR_{γ} , if there exists an indexed family $(\rightarrow_{\alpha})_{\alpha \in (\gamma\gamma)}$ of binary relations on A such that $\rightarrow = \bigcup_{\alpha < \gamma} \rightarrow_{\alpha}$ and for every ordinals $\alpha, \beta < \gamma$ and for every $a, b, c \in A$, if

 $a \rightarrow_{\alpha} b \wedge a \rightarrow_{\beta} c$,

then there exist $b', b'', c', c'', d \in A$ such that

$$\left(b \xrightarrow{*}_{\Upsilon\alpha} b' \xrightarrow{\equiv}_{\{\beta\}} b'' \xrightarrow{*}_{\Upsilon\alpha \cup \Upsilon\beta} d\right) \wedge \left(c \xrightarrow{*}_{\Upsilon\beta} c' \xrightarrow{=}_{\{\alpha\}} c'' \xrightarrow{*}_{\Upsilon\beta \cup \Upsilon\alpha} d\right)$$

Here the following notation is used for any set of ordinals K:

$$\stackrel{=}{\underset{K}{\longrightarrow}} = \{(a,a) \mid a \in A\} \cup \bigcup_{\kappa \in K} \rightarrow_{\kappa} \quad \stackrel{*}{\underset{K}{\longrightarrow}} = \{(a,a) \mid a \in A\} \cup \left(\bigcup_{\kappa \in K} \rightarrow_{\kappa}\right)^{+}$$

Definition

- A subset $B \subseteq A$ is **cofinal** in an ARS (A, \rightarrow) , if $\forall a \in A \exists b \in B \ a \rightarrow^* b$.
- An ARS (A, \rightarrow) has the **cofinality property**, if for every $a \in A$ there exists a *finite or infinite* reduction sequence $b_0 \rightarrow b_1 \rightarrow b_2 \rightarrow ...$ with $b_0 = a$ such that $\{b_0, b_1, b_2, ...\}$ is cofinal in $(X, \rightarrow \cap (X \times X))$, where $X = \{b \in A \mid a \rightarrow^* b\}$.

J. Endrullis, J.W. Klop, R. Overbeek showed⁴ that

Every ARS with the **cofinality property** is in DCR₂.

For **countable** ARS, confluence \Leftrightarrow cofinality property, so

 confluence of a (confluent) countable ARS can always be proved with the help of the decreasing diagrams method using the label set {0,1} ordered in such a way that 0 < 1.

⁴J. Endrullis, J.W. Klop, R. Overbeek. *Decreasing diagrams with two labels are complete for confluence of countable systems*, In: FSCD 2018, pp. 14:1–14:15, 2018

Proposition

Problems considered in this talk

Does there exist an (uncountable) confluent ARS outside of the class DCR₂ ?

The obtained answer is YES.

② Does the DCR hierarchy collapse at the level 2 ?

The obtained answer is NO.

How can one extend the theorem about the DCR₂ property of ARS with the cofinality property (by J. Endrullis, J.W. Klop, R. Overbeek) ?

The proposed answer will be described below.

Main results

- Existence of an ARS in the class DCR₃\DCR₂
- ② Cofinal connected subgraph theorem

1. Existence of an ARS in the class $DCR_3 \setminus DCR_2$

Theorem

 $\textit{DCR}_3 \backslash \textit{DCR}_2 \neq \emptyset$

- This result has been formally verified using Isabelle proof assistant (using HOL logic).
- Formal proof:

http://doi.org/10.5281/zenodo.11571490

(formal theorems thm_1, thm_2).

Idea of construction of a confluent ARS outside DCR2

Explicit simplified example

- The original example of an ARS in the class *DCR*₃*DCR*₂ proposed by the author of this talk and formalized in Isabelle can be found in the paper.
- Reviewers J. Endrullis, F. van Raamsdonk, J.W. Klop in their review of the initial version of the paper proposed the following *simplified* example of a confluent ARS outside *DCR*₂:

Example

The ARS $(\{1,2,3\} \times \mathcal{P}_{fin}(\mathbb{R}), \rightarrow)$, where $\mathcal{P}_{fin}(\mathbb{R})$ denotes the set of all finite subsets of \mathbb{R} , and \rightarrow is defined by the following rules: $(1, P) \rightarrow (2, P \uplus \{p, q\})$ $(2, P) \rightarrow (3, P)$ $(3, P) \rightarrow (2, P \uplus \{p\})$ for all $p, q \in \mathbb{R} \setminus P$ with $p \neq q$.

Theorem

Let (A, \rightarrow) , (B, \rightarrow') be ARS and n be a positive integer. Assume that:

(B, \rightarrow' **)** is a (not necessarily induced) subgraph of (A, \rightarrow)

(B, \rightarrow' **)** is a weakly connected directed graph

③ *B* is cofinal in the ARS (A, →), i.e. $\forall a \in A \exists b \in B \ a \rightarrow^* b$. Then if $(B, \rightarrow') \in DCR_n$, then $(A, \rightarrow) \in DCR_{n+1}$.

- E.g., if (A, →) has a cofinal reduction sequence
 b₀ → b₁ →, one can take (B, →') to be this sequence:
 (B, →') is trivially in DCR₁, so (A, →) must be in DCR₂.
- This result has been formally verified using Isabelle proof assistant.

2. Cofinal connected subgraph theorem

- Further investigation of properties of the DCR hierarchy
- Generalization of the decreasing diagrams method
- Search for new applications of the rewriting theory