On Proving Confluence of Concurrent Programs by All-Path Reachability of LCTRSs

Misaki Kojima Naoki Nishida

Nagoya University

IWC 2024, 9th July, 2024

Contents of This Talk

1. Background

- 2. All-path Reachability Problems of LCTRSs
- 3. Confluence w.r.t. Initial Terms
- 4. Conclusion

Background

- LCTRSs model concurrent programs
 - All-path reachability (APR) analysis for runtime-error verification
- Most concurrent LCTRSs are
 - non-terminating
 - overlapping (with non-trivial CPs)
- Some LCTRSs are confluent w.r.t. an initial ground term
 - Despite not satisfy the well-known criteria for confluence
- Well-known criteria for confluence are
 - termination + joinability of CPs
 - (weak) orthogonality = left-linear + non-overlapping (triviality of CPs)

Purpose and Results

Purpose

Develop a method to prove confluence w.r.t. initial term s_0 of concurrent LCTRSs

Result

Show how to prove joinability of two reachable terms of s_0 by APR proofs

Approach

- A sufficient condition is that all reachable terms can be reduced back to s_0
- Solve APR problem {reachable terms} \Rightarrow {s₀}

Contents of This Talk

- 1. Background
- 2. All-path Reachability Problems of LCTRSs
- 3. Confluence w.r.t. Initial Terms
- 4. Conclusion

Logically Constrained Term Rewrite System (LCTRS) [Kop and Nishida, 2013]

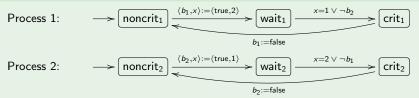
- Computation models for functional and imperative languages
- Represent asynchronous integer transitions systems

Example

$$\mathcal{R}_{2} = \begin{cases} \mathsf{fact}(x) \rightarrow \mathsf{subfact}(x, 1) \\ \mathsf{subfact}(x, y) \rightarrow y & [x \leq 0] \\ \mathsf{subfact}(x, y) \rightarrow \mathsf{subfact}(x - 1, x \times y) & [x > 0] \end{cases}$$
$$\begin{aligned} \mathsf{fact}(3) \rightarrow_{\mathcal{R}_{2}} \mathsf{subfact}(3, 1) \\ \rightarrow_{\mathcal{R}_{2}} \mathsf{subfact}(3 - 1, 3 \times 1) \rightarrow_{\mathcal{R}_{2}}^{2} \mathsf{subfact}(2, 3) \\ \rightarrow_{\mathcal{R}_{2}} \mathsf{subfact}(2 - 1, 2 \times 3) \rightarrow_{\mathcal{R}_{2}}^{2} \mathsf{subfact}(1, 6) \\ \rightarrow_{\mathcal{R}_{2}} \mathsf{subfact}(1 - 1, 1 \times 6) \rightarrow_{\mathcal{R}_{2}}^{2} \mathsf{subfact}(0, 6) \\ \rightarrow_{\mathcal{R}_{2}} \mathsf{6} \end{cases}$$

LCTRSs for Asynchronous ITSs [Kojima and Nishida, 2023]

Example (Peterson's mutual exclusion [Baier and Katoen, 2008])



- *b_i* indicates that Process *i* wants to enter the critical section
- x indicates that Process x has priority for the critical section
- Asynchronous ITS for Processes 1 & 2 is represented by

All-Path Reachability Problems of LCTRSs

[Ciobâcă and Lucanu, 2018]

- Constrained term $\langle t \mid \phi \rangle$
 - t is a term and ϕ is a constraint
 - $\langle t \mid \phi \rangle$ represents the set of ground instance $t\theta$ such that θ satisfies ϕ

Example

Constrained term representing the initial state of the previous example $\langle cnfg(noncrit_1, noncrit_2, false, false, x) \mid x = 1 \lor x = 2 \rangle$

- APR Problem $\langle s \mid \phi \rangle \Rightarrow \langle t \mid \psi \rangle$
- Execution path = finite and ends with an irreducible state or infinite

Demonical validity of $\langle s \mid \phi \rangle \Rightarrow \langle t \mid \psi \rangle$

Every finite execution path from a state in $\langle s \mid \phi \rangle$ includes a state in $\langle t \mid \psi \rangle$

- Constant-directed APR Problem ⟨s | φ⟩ ⇒ ⟨c | true⟩ where c is a constant nf
 Abbreviate to ⟨s | φ⟩ ⇒ c
- · Proof systems for constant-directed APR problems have been proposed

Contents of This Talk

- 1. Background
- 2. All-path Reachability Problems of LCTRSs
- 3. Confluence w.r.t. Initial Terms
- 4. Conclusion

How to Prove Confluence w.r.t. Initial Terms

• Prove that all reachable terms of s_0 can be reduced back to s_0

• This may be reduced to APR problem {reachable terms} \Rightarrow { s_0 }

Difficulties

- {reachable terms} cannot be represented by a single constrained term
- Infinite reductions from t_1 and t_2 are not considered for APR-validity

Approach to difficulties

- Take $\langle s_0 | true \rangle$ for {reachable terms}
 - s_0 itself is a reachable term
 - APR problem $\langle s_0 | true \rangle \Rightarrow \langle s_0 | true \rangle$ is meaningless
- Solve APR problem $\langle s_0 | true \rangle \Rightarrow init of \mathcal{R} \cup \{s_0 \to init\}$
 - init is a fresh constant
- Strong connectedness of APR proofs under certain conditions

c-DCC: Proof System for APR Problems

- [Kojima and Nishida, 2023]
- c-DCC(R, G) : Proof system based on R and the set of APR problems G axiom/c-subs

$$\overline{\langle s \, | \, \phi \rangle \Rightarrow c}$$
 if ϕ is unsatisfiable or $s = c$

c-der

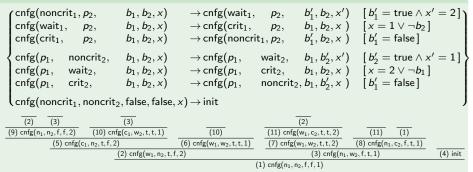
$$\frac{\langle s_1 | \phi_1 \rangle \Rightarrow c \dots \langle s_n | \phi_n \rangle \Rightarrow c}{\langle s | \phi \rangle \Rightarrow c} \text{ if } \langle s | \phi \rangle \cap NF_{\mathcal{R}} = \emptyset$$

where $\langle s_i | \phi_i \rangle$ are constrained terms that are reachable in one step from $\langle s | \phi \rangle$

weak circ

$$\frac{1}{\langle s \mid \phi \rangle \Rightarrow c} \text{ if } \exists (\langle s' \mid \phi' \rangle \Rightarrow c) \in \mathcal{G}. \ \langle s \mid \phi \rangle = \langle s' \mid \phi' \rangle$$

Example (Peterson's mutual exclusion [Baier and Katoen, 2008])

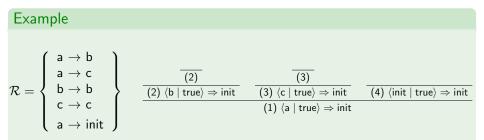


- Note that $\langle s \mid \mathsf{true} \rangle \Rightarrow \mathsf{init}$ abbreviated to s in the above tree
- APR problem $\langle s_0 \mid \mathsf{true} \rangle \Rightarrow \mathsf{init} \text{ of } \mathcal{R} \cup \{s_0 \to \mathsf{init}\} \text{ is solved}$
- All terms are reduced to (1)?
 - Yes, and thus confluent
 - (4) don't have to be considered

• Does validity of APR problem imply joinability of all reachable terms?

No

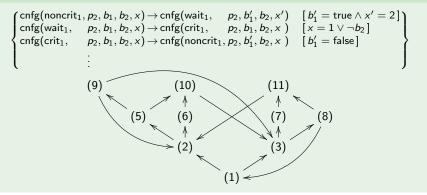
Necessity of Strong Connectedness



• $\langle a \mid true \rangle \Rightarrow init is valid but \mathcal{R} is not confluent$

- Any infinite path not reaching initial term is not considered for APR-validity
- To consider them, we need strong connectedness
 - Ignore (4) $\langle init | true \rangle \Rightarrow init$

Example



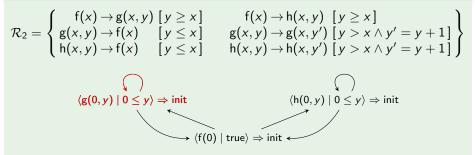
Example

$$\mathcal{R} = \left\{ \begin{array}{c} a \to b \\ a \to c \\ b \to b \\ c \to c \\ a \to \text{init} \end{array} \right\} \qquad (2) \qquad (3)$$

Strong Connectedness is NOT Sufficient

• Strong connectedness does not imply joinability of all reachable terms

Example



- The proof tree is strongly connected
- But R₂ is not confluent w.r.t. f(0)
- There exists a cyclic path such that
 - 1. $\langle \mathsf{g}(x,y) \mid x \leq y \rangle \Rightarrow$ init contains two or more terms, and
 - 2. so is not contained

Our Confluence Criterion

- All reachable terms can be reduced to s_0 if
 - 1. all constrained terms are singleton sets, or
 - 2. there is no cycle not including s_0

Theorem (main result)

Let G be a proof tree for APR problem $\langle s_0 | true \rangle \Rightarrow init of \mathcal{R} \cup \{s_0 \to init\}$. Suppose that G is strongly connected and one of the following holds:

- 1. for every node of G, $\langle s \, | \, \phi \rangle$ of the attached $\langle s \, | \, \phi \rangle \Rightarrow$ init is singleton, or
- 2. $G \setminus \{ root node \}$ is acyclic.

Then, \mathcal{R} is confluent w.r.t. s_0 .

Remarks

- We have not adapted our APR prover Crisys2cdcc to our confluence criterion
- The example (Peterson's mutual exclusion) in this talk is linear and all its CPs are strongly closed and thus strongly confluent [Schöpf and Middeldorp, 2023]
 - crest¹ [Schöpf and Middeldorp, 2024] succeeds in proving its confluence
 - crest failed to prove confluence of the LCTRS obtained from it by adding some redundant rules (ℓ → ℓ)

¹http://cl-informatik.uibk.ac.at/software/crest/

Contents of This Talk

- 1. Background
- 2. All-path Reachability Problems of LCTRSs
- 3. Confluence w.r.t. Initial Terms
- 4. Conclusion

Conclusion

Summary

Show how to prove joinability of two reachable terms of s_0 by APR proofs

Future Work

- Implementation
- Relax our sufficient condition
 - Each CP can be reduced to its critical peak

References

Baier, C. and Katoen, J. (2008). *Principles of model checking*. MIT Press.

Ciobâcă, Ș. and Lucanu, D. (2018).

A coinductive approach to proving reachability properties in logically constrained term rewriting systems.

In Galmiche, D., Schulz, S., and Sebastiani, R., editors, *Proceedings of the 9th International Joint Conference on Automated Reasoning*, volume 10900 of *Lecture Notes in Computer Science*, pages 295–311. Springer.

Kojima, M. and Nishida, N. (2023).

Reducing non-occurrence of specified runtime errors to all-path reachability problems of constrained rewriting.

Journal of Logical and Algebraic Methods in Programming, 135:1–19.

Kop, C. and Nishida, N. (2013).

Term rewriting with logical constraints.

In Fontaine, P., Ringeissen, C., and Schmidt, R. A., editors, *Proceedings of the 9th International Symposium on Frontiers of Combining Systems*, volume 8152 of *Lecture Notes in Artificial Intelligence*, pages 343–358.

References (cont.)

Schöpf, J. and Middeldorp, A. (2023).

Confluence criteria for logically constrained rewrite systems.

In Pientka, B. and Tinelli, C., editors, *Proceedings of the 29th International Conference on Automated Deduction*, volume 14132 of *Lecture Notes in Computer Science*, pages 474–490. Springer.

Schöpf, J. and Middeldorp, A. (2024).

crest 0.8.

In Chenavier, C. and Nishida, N., editors, *Proceedings of the 13th International Workshop on Confluence*, pages 66–66.