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Background

Concurrent program // transformation // concurrent LCTRS // APR analysis // result

• LCTRSs model concurrent programs
▶ All-path reachability (APR) analysis for runtime-error verification

• Most concurrent LCTRSs are
▶ non-terminating
▶ overlapping (with non-trivial CPs)

• Some LCTRSs are confluent w.r.t. an initial ground term
▶ Despite not satisfy the well-known criteria for confluence

• Well-known criteria for confluence are
▶ termination + joinability of CPs
▶ (weak) orthogonality = left-linear + non-overlapping (triviality of CPs)
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Purpose and Results

Purpose

Develop a method to prove confluence w.r.t. initial term s0 of concurrent LCTRSs

s0∗
~~

∗
  

t1 ∗
  

t2∗
~~·

Result
Show how to prove joinability of two reachable terms of s0 by APR proofs

Approach
• A sufficient condition is that all reachable terms can be reduced back to s0
• Solve APR problem {reachable terms} ⇒ {s0}
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Logically Constrained Term Rewrite System (LCTRS)
[Kop and Nishida, 2013]

• Computation models for functional and imperative languages

• Represent asynchronous integer transitions systems

Example

R2=

 fact(x)→ subfact(x , 1)
subfact(x , y)→ y [ x ≤ 0 ]
subfact(x , y)→ subfact(x − 1, x × y) [ x > 0 ]


fact(3)→R2 subfact(3, 1)

→R2 subfact(3− 1, 3× 1)→2
R2

subfact(2, 3)
→R2 subfact(2− 1, 2× 3)→2

R2
subfact(1, 6)

→R2 subfact(1− 1, 1× 6)→2
R2

subfact(0, 6)
→R2 6
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LCTRSs for Asynchronous ITSs [Kojima and Nishida, 2023]

Example (Peterson’s mutual exclusion [Baier and Katoen, 2008])

Process 1: //
�� ��noncrit1

⟨b1,x⟩:=⟨true,2⟩ //
�� ��wait1

x=1∨¬b2 //
�� ��crit1

b1:=false

ll

Process 2: //
�� ��noncrit2

⟨b2,x⟩:=⟨true,1⟩ //
�� ��wait2

x=2∨¬b1 //
�� ��crit2

b2:=false

ll

• bi indicates that Process i wants to enter the critical section

• x indicates that Process x has priority for the critical section

• Asynchronous ITS for Processes 1 & 2 is represented by

cnfg(noncrit1, p2, b1, b2, x)→ cnfg(wait1, p2, b′1, b2, x
′) [ b′1 = true ∧ x ′ = 2 ]

cnfg(wait1, p2, b1, b2, x)→ cnfg(crit1, p2, b1, b2, x ) [ x = 1 ∨ ¬b2 ]
cnfg(crit1, p2, b1, b2, x)→ cnfg(noncrit1, p2, b′1, b2, x ) [ b′1 = false ]

cnfg(p1, noncrit2, b1, b2, x)→ cnfg(p1, wait2, b1, b′2, x
′) [ b′2 = true ∧ x ′ = 1 ]

cnfg(p1, wait2, b1, b2, x)→ cnfg(p1, crit2, b1, b2, x ) [ x = 2 ∨ ¬b1 ]
cnfg(p1, crit2, b1, b2, x)→ cnfg(p1, noncrit2, b1, b′2, x ) [ b′1 = false ]


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All-Path Reachability Problems of LCTRSs
[Ciobâcă and Lucanu, 2018]

• Constrained term ⟨t | ϕ⟩
▶ t is a term and ϕ is a constraint
▶ ⟨t | ϕ⟩ represents the set of ground instance tθ such that θ satisfies ϕ

Example
Constrained term representing the initial state of the previous example

⟨cnfg(noncrit1, noncrit2, false, false, x) | x = 1 ∨ x = 2⟩

• APR Problem ⟨s | ϕ⟩ ⇒ ⟨t | ψ⟩
• Execution path = finite and ends with an irreducible state or infinite

Demonical validity of ⟨s | ϕ⟩ ⇒ ⟨t | ψ⟩
Every finite execution path from a state in ⟨s | ϕ⟩ includes a state in ⟨t | ψ⟩

• Constant-directed APR Problem ⟨s | ϕ⟩ ⇒ ⟨c | true⟩ where c is a constant nf
▶ Abbreviate to ⟨s | ϕ⟩ ⇒ c

• Proof systems for constant-directed APR problems have been proposed
[Kojima and Nishida, 2023]
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How to Prove Confluence w.r.t. Initial Terms

• Prove that all reachable terms of s0 can be reduced back to s0

s0∗
~~

∗
  

t1
∗

GG

t2
∗

WW

• This may be reduced to APR problem {reachable terms} ⇒ {s0}

Difficulties
• {reachable terms} cannot be represented by a single constrained term

• Infinite reductions from t1 and t2 are not considered for APR-validity

Approach to difficulties
• Take ⟨s0 | true⟩ for {reachable terms}

▶ s0 itself is a reachable term
▶ APR problem ⟨s0 | true⟩ ⇒ ⟨s0 | true⟩ is meaningless

• Solve APR problem ⟨s0 | true⟩ ⇒ init of R∪ {s0 → init}
▶ init is a fresh constant

• Strong connectedness of APR proofs under certain conditions
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c-DCC: Proof System for APR Problems
[Kojima and Nishida, 2023]

• c-DCC(R,G) : Proof system based on R and the set of APR problems G

axiom/c-subs

if ϕ is unsatisfiable or s = c
⟨s |ϕ⟩ ⇒ c

c-der

⟨s1 |ϕ1⟩ ⇒ c . . . ⟨sn |ϕn⟩ ⇒ c
if ⟨s |ϕ⟩ ∩ NFR = ∅

⟨s |ϕ⟩ ⇒ c

where ⟨si |ϕi ⟩ are constrained terms that are reachable in one step from ⟨s |ϕ⟩

weak circ

if ∃(⟨s ′ |ϕ′⟩ ⇒ c) ∈ G. ⟨s |ϕ⟩ = ⟨s ′ |ϕ′⟩
⟨s |ϕ⟩ ⇒ c
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Example (Peterson’s mutual exclusion [Baier and Katoen, 2008])

cnfg(noncrit1, p2, b1, b2, x) → cnfg(wait1, p2, b′1, b2, x
′) [ b′1 = true ∧ x ′ = 2 ]

cnfg(wait1, p2, b1, b2, x) → cnfg(crit1, p2, b1, b2, x ) [ x = 1 ∨ ¬b2 ]
cnfg(crit1, p2, b1, b2, x) → cnfg(noncrit1, p2, b′1, b2, x ) [ b′1 = false ]

cnfg(p1, noncrit2, b1, b2, x) → cnfg(p1, wait2, b1, b′2, x
′) [ b′2 = true ∧ x ′ = 1 ]

cnfg(p1, wait2, b1, b2, x) → cnfg(p1, crit2, b1, b2, x ) [ x = 2 ∨ ¬b1 ]
cnfg(p1, crit2, b1, b2, x) → cnfg(p1, noncrit2, b1, b′2, x ) [ b′1 = false ]

cnfg(noncrit1, noncrit2, false, false, x)→ init


(2) (3)

(9) cnfg(n1, n2, f, f, 2)

(3)

(10) cnfg(c1,w2, t, t, 1)

(5) cnfg(c1, n2, t, f, 2)

(10)

(6) cnfg(w1,w2, t, t, 1)

(2) cnfg(w1, n2, t, f, 2)

(2)

(11) cnfg(w1, c2, t, t, 2)

(7) cnfg(w1,w2, t, t, 2)

(11) (1)

(8) cnfg(n1, c2, f, t, 1)

(3) cnfg(n1,w2, f, t, 1) (4) init

(1) cnfg(n1, n2, f, f, 1)

• Note that ⟨s | true⟩ ⇒ init abbreviated to s in the above tree

• APR problem ⟨s0 | true⟩ ⇒ init of R∪ {s0 → init} is solved

• All terms are reduced to (1)?
▶ Yes, and thus confluent
▶ (4) don’t have to be considered

• Does validity of APR problem imply joinability of all reachable terms?
▶ No
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Necessity of Strong Connectedness

Example

R =


a → b
a → c
b → b
c → c

a → init


(2)

(2) ⟨b | true⟩ ⇒ init

(3)

(3) ⟨c | true⟩ ⇒ init (4) ⟨init | true⟩ ⇒ init

(1) ⟨a | true⟩ ⇒ init

• ⟨a | true⟩ ⇒ init is valid but R is not confluent

• Any infinite path not reaching initial term is not considered for APR-validity

• To consider them, we need strong connectedness
▶ Ignore (4) ⟨init | true⟩ ⇒ init
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Example
cnfg(noncrit1, p2, b1, b2, x)→ cnfg(wait1, p2, b′1, b2, x

′) [ b′1 = true ∧ x ′ = 2 ]
cnfg(wait1, p2, b1, b2, x)→ cnfg(crit1, p2, b1, b2, x ) [ x = 1 ∨ ¬b2 ]
cnfg(crit1, p2, b1, b2, x)→ cnfg(noncrit1, p2, b′1, b2, x ) [ b′1 = false ]

...


(9)

..
��

(10)

%%

(11)

yy

(5)

dd 99

(6)

OO

(7)

OO

(8)

ee

pp

(2)

ee OO

(3)

OO 99

(1)

ee 99

Example

R =


a → b
a → c
b → b
c → c

a → init

 (2)
��

(3)
��

(1)

dd ::
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Strong Connectedness is NOT Sufficient

• Strong connectedness does not imply joinability of all reachable terms

Example

R2 =

 f(x)→ g(x , y) [ y ≥ x ] f(x)→ h(x , y) [ y ≥ x ]
g(x , y)→ f(x) [ y ≤ x ] g(x , y)→ g(x , y ′) [ y > x ∧ y ′ = y + 1 ]
h(x , y)→ f(x) [ y ≤ x ] h(x , y)→ h(x , y ′) [ y > x ∧ y ′ = y + 1 ]



⟨f(0) | true⟩ ⇒ init

⟨g(0, y) | 0 ≤ y⟩ ⇒ init⟨g(0, y) | 0 ≤ y⟩ ⇒ init ⟨h(0, y) | 0 ≤ y⟩ ⇒ init

• The proof tree is strongly connected

• But R2 is not confluent w.r.t. f(0)

• There exists a cyclic path such that

1. ⟨g(x , y) | x ≤ y⟩ ⇒ init contains two or more terms, and
2. s0 is not contained
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Our Confluence Criterion

• All reachable terms can be reduced to s0 if

1. all constrained terms are singleton sets, or
2. there is no cycle not including s0

Theorem (main result)

Let G be a proof tree for APR problem ⟨s0 | true⟩ ⇒ init of R∪ {s0 → init}.
Suppose that G is strongly connected and one of the following holds:

1. for every node of G, ⟨s |ϕ⟩ of the attached ⟨s |ϕ⟩ ⇒ init is singleton, or

2. G \ {root node} is acyclic.

Then, R is confluent w.r.t. s0.
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Remarks

• We have not adapted our APR prover Crisys2cdcc to our confluence criterion

• The example (Peterson’s mutual exclusion) in this talk is linear and all its CPs
are strongly closed and thus strongly confluent [Schöpf and Middeldorp, 2023]

▶ crest1 [Schöpf and Middeldorp, 2024] succeeds in proving its confluence
▶ crest failed to prove confluence of the LCTRS obtained from it by adding

some redundant rules (ℓ → ℓ)

1http://cl-informatik.uibk.ac.at/software/crest/
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Conclusion

Summary

Show how to prove joinability of two reachable terms of s0 by APR proofs

Future Work
• Implementation

• Relax our sufficient condition
▶ Each CP can be reduced to its critical peak

t0

~~   
t1

∗ 33

t2

∗kk

~~   
t3

∗ 33

t4

∗kk
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Schöpf, J. and Middeldorp, A. (2024).
crest 0.8.
In Chenavier, C. and Nishida, N., editors, Proceedings of the 13th International Workshop on
Confluence, pages 66–66.


	Background
	All-path Reachability Problems of LCTRSs
	Confluence w.r.t. Initial Terms
	Conclusion

