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International Workshop on Confluence

▶ established in 2012 (29 May, Nagoya)

▶ organising committee: Nao Hirokawa, Aart Middeldorp, Naoki Nishida

▶ permanent website: http://cl-informatik.uibk.ac.at/iwc/

▶ friendly workshop with clear bylaws

Confluence Competition

▶ established in 2012 (29 May, Nagoya)

▶ organising committee: Takahito Aoto, Nao Hirokawa, Harald Zankl

▶ permanent website: https://project-coco.uibk.ac.at/

▶ friendly competition with clear bylaws
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IWC Quiz 1

which years was CoCo not part of IWC ?

2018 (FSCD) 2019 (TOOLympics @ TACAS)

IWC Quiz 2

who published the second most papers at IWC (excluding CoCo tool papers) ?

Nao Hirokawa

IWC Quiz 3

who are the most frequent PC members at IWC ?

Cyril Chevanier Sarah Winkler
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compute
n∑

i=1

i for natural number n

Example

▶ term rewrite system (TRS)

sum(0) → 0 add(0, y) → y

sum(s(x)) → add(s(x), sum(x)) add(s(x), y) → s(add(x, y))

▶ rewriting

sum(s(s(s(0))) → add(s(s(s(0))), sum(s(s(0)))) → s(add(s(s(0)), sum(s(s(0)))))

→ · · · → s(s(s(s(s(s(0))))))

▶ logically constrained term rewrite system (LCTRS)

sum(x) → 0 [ x ⩽ 0 ] sum(x) → x+ sum(x− 1) [ x > 0 ]

▶ rewriting

sum(3) → 3 + sum(3 − 1)

→ 3 + sum(2) → 3 + (2 + sum(2 − 1)) → · · · → 6
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Definitions

▶ many-sorted signature F = Fte ∪ Fth and non-empty set of constant symbols Val ⊆ Fth

▶ logical term is element of T (Fth,V)
▶ constraint is logical term of sort Bool

▶ logical ground terms are mapped to values: [[f(t1, . . . , tn)]] = fJ ([[t1 ]], . . . , [[tn ]])

▶ constrained rewrite rule is triple ℓ→ r [φ ] with constraint φ and terms ℓ, r ∈ T (F ,V) of

same sort such that root(ℓ) ∈ Fte \ Fth

▶ LCTRS R is set of constrained rewrite rules

▶ calculation rule is f(x1, . . . , xn) → y [ y = f(x1, . . . , xn) ] with f ∈ Fth \ Val and fresh y

▶ Rca is set of calculation rules and Rrc = R ∪ Rca
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Example

▶ LCTRS

sum(x) → 0 [ x ⩽ 0 ] sum(x) → x+ sum(x− 1) [ x > 0 ]

▶ two sorts Int and Bool with Val Int = Z and ValBool = {⊥,⊤}

▶ signature Fth +,− : Int × Int → Int ⩽, > : Int × Int → Bool . . . ,−1, 0, 1, · · · : Int

▶ signature Fte sum : Int → Int

Definition

substitution σ respects constrained rewrite rule ρ : ℓ→ r [φ ] if

1 Dom(σ) ⊆ Var(ρ)

2 σ(x) ∈ Val for all x ∈ LVar(ρ) = Var(φ) ∪ (Var(r ) \ Var(ℓ)) (logical variables)

3 [[φσ ]] = ⊤

notation: σ ⊨ ρ
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Definition

s →R t if there exist

1 position p in s

2 rewrite rule ℓ→ r [φ ] in Rrc

3 substitution σ

such that s|p = ℓσ, t = s[rσ ]p and σ ⊨ ℓ→ r [φ ]

Example

▶ LCTRS R = {sum(x) → 0 [ x ⩽ 0 ], sum(x) → x+ sum(x− 1) [ x > 0 ]}
▶ rewrite step sum(3 − 1) →R sum(2)

1 position 1

2 calculation rule x1 − x2 → y [ y = x1 − x2 ]

3 substitution σ = {x1 7→ 3, x2 7→ 1, y 7→ 2}
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Kop & Nishida (FroCoS 2013)

. . . common analysis techniques for term rewriting extend to LCTRSs without much effort

Confluence Methods for TRSs

(CADE 2023)

critical pair closing systems decreasing diagrams development closed critical pairs

discrimination pairs

joinable critical pairs for terminating systems orthogonality

parallel closed critical pairs parallel critical pairs redundant rules rule labeling

simultaneous critical pairs source labeling strongly closed critical pairs

tree automata weak orthogonality Z property · · ·
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Definitions

▶ overlap of LCTRS R is triple ⟨ρ1,p, ρ2⟩

such that

1 ρ1 : ℓ1 → r1 [φ1 ] and ρ2 : ℓ2 → r2 [φ2 ] are variable-disjoint variants of rules in Rrc

2 p ∈ PosF (ℓ2 )

3 ℓ1 and ℓ2|p unify with mgu σ such that σ(x) ∈ Val ∪ V for all x ∈ LVar(ρ1 ) ∪ LVar(ρ2 )

4 φ1σ ∧ φ2σ is satisfiable

5 if p = ϵ then ρ1 and ρ2 are not variants or Var(r1 ) ⊈ Var(ℓ1 )

▶ ℓ2σ [r1σ ]p ≈ r2σ [φ1σ ∧ φ2σ ∧ ψσ ] is induced constrained critical pair

▶ EVar(ℓ→ r [φ ]) = Var(r ) \ (Var(ℓ) ∪ Var(φ)) is set of extra variables

▶ ψ = ECρ1 ∧ ECρ2 where ECρ with ρ : ℓ→ r [φ ] abbreviates
∧
{x = x | x ∈ EVar(ρ)}

▶ substitution σ respects constraint φ (σ ⊨ φ) if σ(x) ∈ Val for x ∈ Var(φ) and [[φσ ]] = ⊤
▶ constrained equation s ≈ t [φ ] is trivial if sσ = tσ for every substitution σ with σ ⊨ φ
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Example

▶ LCTRS R
f(x) → g(y) g(y) → a [ y = y ]

▶ constrained critical pair
g(y) ≈ g(z) [ y = y ∧ z = z ]

is joinable because y and z are restricted to values

Theorem

(local) confluence is decidable for finite terminating TRSs

Theorem

(IJCAR 2024)

(local) confluence is undecidable for finite terminating LCTRSs
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IWC Quiz 1

which years was CoCo not part of IWC ?

2018 (FSCD) 2019 (TOOLympics @ TACAS)

IWC Quiz 2

who published the second most papers at IWC (excluding CoCo tool papers) ?

Nao Hirokawa

IWC Quiz 3

who are the most frequent PC members at IWC ?

Cyril Chevanier Sarah Winkler
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Reduction from PCP

▶ PCP instance P = {(α1, β1), . . . , (αN, βN)} with α1, . . . , αN, β1, . . . , βN ∈ {0,1}+

▶ αi ̸= βi for at least one i ∈ {1, . . . , N}
▶ encode candidate strings over {1, . . . , N} as natural numbers

:

[ϵ] = 0

[ i0 i1 · · · ik ] = N · [ i1 · · · ik ] + i0

= i0 + i1 · N+ · · ·+ ik · Nk

Example

N = 3 [3313]

= 3 · [313] + 3 = 102 [13] = 3 · [3] + 1 = 10

[ ] = 22 [313] = 3 · [13] + 3 = 33 [3] = 3 · [ϵ] + 3 = 3

Remark

mapping [ ·] is bijection between N and candidate strings over {1, . . . , N}, for each N > 0
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:

[ϵ] = 0

[ i0 i1 · · · ik ] = N · [ i1 · · · ik ] + i0

= i0 + i1 · N+ · · ·+ ik · Nk

Example

N = 3 [3313]

= 3 · [313] + 3 = 102 [13] = 3 · [3] + 1 = 10

[ ] = 22 [313] = 3 · [13] + 3 = 33 [3] = 3 · [ϵ] + 3 = 3

Remark

mapping [ ·] is bijection between N and candidate strings over {1, . . . , N}, for each N > 0

IWC 2024 9 July 2024 4. Undecidability 16/40



Reduction from PCP

▶ PCP instance P = {(α1, β1), . . . , (αN, βN)} with α1, . . . , αN, β1, . . . , βN ∈ {0,1}+

▶ αi ̸= βi for at least one i ∈ {1, . . . , N}
▶ encode candidate strings over {1, . . . , N} as natural numbers:

[ϵ] = 0

[ i0 i1 · · · ik ] = N · [ i1 · · · ik ] + i0

= i0 + i1 · N+ · · ·+ ik · Nk

Example

N = 3 [3313]

= 3 · [313] + 3 = 102 [13] = 3 · [3] + 1 = 10

[ ] = 22 [313] = 3 · [13] + 3 = 33 [3] = 3 · [ϵ] + 3 = 3

Remark

mapping [ ·] is bijection between N and candidate strings over {1, . . . , N}, for each N > 0

IWC 2024 9 July 2024 4. Undecidability 16/40



Reduction from PCP

▶ PCP instance P = {(α1, β1), . . . , (αN, βN)} with α1, . . . , αN, β1, . . . , βN ∈ {0,1}+

▶ αi ̸= βi for at least one i ∈ {1, . . . , N}
▶ encode candidate strings over {1, . . . , N} as natural numbers:

[ϵ] = 0

[ i0 i1 · · · ik ] = N · [ i1 · · · ik ] + i0 = i0 + i1 · N+ · · ·+ ik · Nk

Example

N = 3 [3313]

= 3 · [313] + 3 = 102 [13] = 3 · [3] + 1 = 10

[ ] = 22 [313] = 3 · [13] + 3 = 33 [3] = 3 · [ϵ] + 3 = 3

Remark

mapping [ ·] is bijection between N and candidate strings over {1, . . . , N}, for each N > 0

IWC 2024 9 July 2024 4. Undecidability 16/40



Reduction from PCP

▶ PCP instance P = {(α1, β1), . . . , (αN, βN)} with α1, . . . , αN, β1, . . . , βN ∈ {0,1}+

▶ αi ̸= βi for at least one i ∈ {1, . . . , N}
▶ encode candidate strings over {1, . . . , N} as natural numbers:

[ϵ] = 0

[ i0 i1 · · · ik ] = N · [ i1 · · · ik ] + i0 = i0 + i1 · N+ · · ·+ ik · Nk

Example

N = 3 [3313]

= 3 · [313] + 3 = 102 [13] = 3 · [3] + 1 = 10

[ ] = 22 [313] = 3 · [13] + 3 = 33 [3] = 3 · [ϵ] + 3 = 3

Remark

mapping [ ·] is bijection between N and candidate strings over {1, . . . , N}, for each N > 0

IWC 2024 9 July 2024 4. Undecidability 16/40



Reduction from PCP

▶ PCP instance P = {(α1, β1), . . . , (αN, βN)} with α1, . . . , αN, β1, . . . , βN ∈ {0,1}+

▶ αi ̸= βi for at least one i ∈ {1, . . . , N}
▶ encode candidate strings over {1, . . . , N} as natural numbers:

[ϵ] = 0

[ i0 i1 · · · ik ] = N · [ i1 · · · ik ] + i0 = i0 + i1 · N+ · · ·+ ik · Nk

Example

N = 3 [3313] = 3 · [313] + 3

= 102 [13] = 3 · [3] + 1 = 10

[ ] = 22 [313] = 3 · [13] + 3 = 33 [3] = 3 · [ϵ] + 3 = 3

Remark

mapping [ ·] is bijection between N and candidate strings over {1, . . . , N}, for each N > 0

IWC 2024 9 July 2024 4. Undecidability 16/40



Reduction from PCP

▶ PCP instance P = {(α1, β1), . . . , (αN, βN)} with α1, . . . , αN, β1, . . . , βN ∈ {0,1}+

▶ αi ̸= βi for at least one i ∈ {1, . . . , N}
▶ encode candidate strings over {1, . . . , N} as natural numbers:

[ϵ] = 0

[ i0 i1 · · · ik ] = N · [ i1 · · · ik ] + i0 = i0 + i1 · N+ · · ·+ ik · Nk

Example

N = 3 [3313] = 3 · [313] + 3

= 102

[13] = 3 · [3] + 1

= 10

[ ] = 22

[313] = 3 · [13] + 3

= 33

[3] = 3 · [ϵ] + 3

= 3

Remark

mapping [ ·] is bijection between N and candidate strings over {1, . . . , N}, for each N > 0

IWC 2024 9 July 2024 4. Undecidability 16/40



Reduction from PCP

▶ PCP instance P = {(α1, β1), . . . , (αN, βN)} with α1, . . . , αN, β1, . . . , βN ∈ {0,1}+

▶ αi ̸= βi for at least one i ∈ {1, . . . , N}
▶ encode candidate strings over {1, . . . , N} as natural numbers:

[ϵ] = 0

[ i0 i1 · · · ik ] = N · [ i1 · · · ik ] + i0 = i0 + i1 · N+ · · ·+ ik · Nk

Example

N = 3 [3313] = 3 · [313] + 3 = 102 [13] = 3 · [3] + 1 = 10

[ ] = 22

[313] = 3 · [13] + 3 = 33 [3] = 3 · [ϵ] + 3 = 3

Remark

mapping [ ·] is bijection between N and candidate strings over {1, . . . , N}, for each N > 0

IWC 2024 9 July 2024 4. Undecidability 16/40



Reduction from PCP

▶ PCP instance P = {(α1, β1), . . . , (αN, βN)} with α1, . . . , αN, β1, . . . , βN ∈ {0,1}+

▶ αi ̸= βi for at least one i ∈ {1, . . . , N}
▶ encode candidate strings over {1, . . . , N} as natural numbers:

[ϵ] = 0

[ i0 i1 · · · ik ] = N · [ i1 · · · ik ] + i0 = i0 + i1 · N+ · · ·+ ik · Nk

Example

N = 3 [3313] = 3 · [313] + 3 = 102 [13] = 3 · [3] + 1 = 10

[ ] = 22 [313] = 3 · [13] + 3 = 33 [3] = 3 · [ϵ] + 3 = 3

Remark

mapping [ ·] is bijection between N and candidate strings over {1, . . . , N}, for each N > 0

IWC 2024 9 July 2024 4. Undecidability 16/40



Reduction from PCP

▶ PCP instance P = {(α1, β1), . . . , (αN, βN)} with α1, . . . , αN, β1, . . . , βN ∈ {0,1}+

▶ αi ̸= βi for at least one i ∈ {1, . . . , N}
▶ encode candidate strings over {1, . . . , N} as natural numbers:

[ϵ] = 0

[ i0 i1 · · · ik ] = N · [ i1 · · · ik ] + i0 = i0 + i1 · N+ · · ·+ ik · Nk

Example

N = 3 [3313] = 3 · [313] + 3 = 102 [13] = 3 · [3] + 1 = 10

[112] = 22 [313] = 3 · [13] + 3 = 33 [3] = 3 · [ϵ] + 3 = 3

Remark

mapping [ ·] is bijection between N and candidate strings over {1, . . . , N}, for each N > 0

IWC 2024 9 July 2024 4. Undecidability 16/40



Reduction from PCP

▶ PCP instance P = {(α1, β1), . . . , (αN, βN)} with α1, . . . , αN, β1, . . . , βN ∈ {0,1}+

▶ αi ̸= βi for at least one i ∈ {1, . . . , N}
▶ encode candidate strings over {1, . . . , N} as natural numbers:

[ϵ] = 0

[ i0 i1 · · · ik ] = N · [ i1 · · · ik ] + i0 = i0 + i1 · N+ · · ·+ ik · Nk

Example

N = 3 [3313] = 3 · [313] + 3 = 102 [13] = 3 · [3] + 1 = 10

[112] = 22 [313] = 3 · [13] + 3 = 33 [3] = 3 · [ϵ] + 3 = 3

Remark

mapping [ ·] is bijection between N and candidate strings over {1, . . . , N}, for each N > 0

IWC 2024 9 July 2024 4. Undecidability 16/40



Definition

LCTRS RP over theory Ints

▶ values Val = B ∪ Z and theory symbols Fth = {>,+, ·,=, ∧} ∪ Val

▶ additional sorts PCP and String

▶ term signature: e : String 0,1 : String → String alpha,beta : Int → String

start,⊤,⊥ : PCP test : String × String → PCP

▶ constrained rewrite rules

start → test(alpha(n),beta(n)) [n > 0 ]

test(e, e) → ⊤
test(0(x),0(y)) → test(x, y) test(0(x),1(y)) → ⊥ test(0(x), e) → ⊥ test(e,0(y)) → ⊥
test(1(x),1(y)) → test(x, y) test(1(x),0(y)) → ⊥ test(1(x), e) → ⊥ test(e,1(y)) → ⊥

alpha(0) → e alpha(n) → ααα i (alpha(m)) [N ·m+ i = n ∧ n > 0 ]

beta(0) → e beta(n) → βββ i (beta(m)) [N ·m+ i = n ∧ n > 0 ]

for all i ∈ {1, . . . , N}
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Remark

constraints belong to decidable fragment of LIA =⇒ rewrite relation →RP is computable

Theorem

RP is locally confluent ⇐⇒ P has no solutions

Proof

▶ constrained critical pairs

test(alpha(n),beta(n)) ≈ test(alpha(m),beta(m)) [n > 0 ∧ m > 0 ]

ααα i (alpha(m)) ≈ ααα j (alpha(k)) [N ·m+ i = n ∧ n > 0 ∧ N · k + j = n ]

βββ i (beta(m)) ≈ βββ j (beta(k)) [N ·m+ i = n ∧ n > 0 ∧ N · k + j = n ]

▶ test(alpha(n),beta(n)) →∗

{
⊤ if n > 0 encodes solution of P

⊥ if n > 0 does not encode solution of P

▶ test(alpha(n),beta(n)) →∗ ⊥ for at least one n > 0 because P is non-trivial
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Lemma

RP is terminating

Proof

RPO (LCTRS version) with precedence

start > test > alpha > beta > 1 > 0 > e > ⊤ > ⊥

and well-founded order = Int on integers

x = Int y ⇐⇒ x > y and x ⩾ 0

orients rules of RP from left to right

Corollary

(local) confluence of terminating LCTRSs is undecidable, even if underlying theory is decidable
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Definition (Transformation)

LCTRS R is transformed into TRS R consisting of

ℓτ → r τ

for all ρ : ℓ→ r [φ ] ∈ Rrc and substitutions τ with τ ⊨ ρ and Dom(τ) = LVar(ρ)

Example

LCTRS R

sum(x) → 0 [ x ⩽ 0 ] sum(x) → x+ sum(x− 1) [ x > 0 ]

is transformed into TRS R

sum(0) → 0 sum(−1) → 0 sum(−2) → 0 · · ·

sum(1) → 1 + sum(1 − 1) sum(2) → 2 + sum(2 − 1) · · ·
1 + 3 → 4 2 − 1 → 1 3 > 0 → true 2 ⩽ 0 → false · · ·
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Lemma

rewrite relations of R and R coincide

Corollary

LCTRS R is terminating ⇐⇒ TRS R is terminating

Example

termination of TRS RP is easily shown by LPO or dependency pairs

Corollary

LCTRS R is confluent ⇐⇒ TRS R is confluent

Goal

adapt concrete confluence methods for TRSs to LCTRSs via transformation
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Theorem

for every critical pair s ≈ t of R there exist constrained critical pair u ≈ v [φ ] of R and

substitution γ such that s = uγ, t = vγ and γ ⊨ φ

Remark

converse does not hold:

LCTRS R = {a → x [ x = 0 ]} admits one (trivial) constrained critical pair

TRS R = {a → 0} has no critical pairs

Theorem

for every constrained critical pair u ≈ v [φ ] of R and substitution σ such that σ ⊨ φ

1 uσ = vσ or

2 there exist critical pair s ≈ t of R and substitution δ such that uσ = sδ and tσ = vδ
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Corollary

R is weakly orthogonal ⇐⇒ R is weakly orthogonal

Corollary (Kop & Nishida, FroCoS 2013)

weakly orthogonal LCTRSs are confluent

General Proof Idea

s ≈ t ∈ CP(R) u ≈ v [φ ] ∈ CCP(R)
s = uσ t = vσ

σ ⊨ φ

••
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Remark

more advanced confluence criteria require rewriting of constrained terms and equations

Definitions

▶ σ ⊨d φ if σ ⊨ φ and Dom(σ) = Var(φ)

▶ constraint φ is valid if [[φγ ]] = ⊤ for all substitutions γ such that γ(x) ∈ Val for x ∈ Var(φ)

▶ constrained term is pair s [φ ] consisting of term s and constraint φ

▶ constrained terms s [φ ] and t [ψ ] are equivalent (s [φ ] ∼ t [ψ ]) if for every substitution

γ ⊨d φ there is substitution δ ⊨d ψ such that sγ = tδ, and vice versa

▶ s [φ ] →R t [φ ] if s|p = ℓσ and t = s[rσ ]p for some position p, constrained rewrite rule

ℓ→ r [ψ ] in Rrc and substitution σ such that σ(x) ∈ Val ∪ Var(φ) for all x ∈ LVar(ρ),

φ is satisfiable and φ⇒ ψσ is valid

▶ rewrite relation ∼→R on constrained terms is defined as ∼ · →R · ∼
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Example

LCTRS R over theory Ints

max(x, y) → x [ x ⩾ y ] max(x, y) → y [ y ⩾ x ]

constrained rewriting

max(1 + x,3 + y) [ x > 3 ∧ y = 1 ]

∼ max(1 + x,3 + y) [ x > 3 ∧ y = 1 ∧ z = 1 + x ]

→ max(z,3 + y) [ x > 3 ∧ y = 1 ∧ z = 1 + x ]

∼ max(z,3 + y) [ x > 3 ∧ y = 1 ∧ z = 1 + x ∧ w = 3 + y ]

→ max(z,w) [ x > 3 ∧ y = 1 ∧ z = 1 + x ∧ w = 3 + y ]

→ z [ x > 3 ∧ y = 1 ∧ z = 1 + x ∧ w = 3 + y ]

∼ z [ x > 3 ∧ z = 1 + x ]

multi-step rewriting

max(1 + x,3 + y) [ x > 3 ∧ y = 1 ]
∼◦−→ z [ x > 3 ∧ z = 1 + x ]
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IWC Quiz 1

which years was CoCo not part of IWC ?

2018 (FSCD) 2019 (TOOLympics @ TACAS)

IWC Quiz 2

who published the second most papers at IWC (excluding CoCo tool papers) ?

Nao Hirokawa

IWC Quiz 3

who are the most frequent PC members at IWC ?

Cyril Chevanier Sarah Winkler
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Kop & Nishida (FroCoS 2013)

. . . common analysis techniques for term rewriting extend to LCTRSs without much effort

Confluence Methods for LCTRSs

(CADE 2023)

critical pair closing systems decreasing diagrams development closed critical pairs

discrimination pairs

joinable critical pairs for terminating systems orthogonality

parallel closed critical pairs parallel critical pairs redundant rules rule labeling

simultaneous critical pairs source labeling strongly closed critical pairs

tree automata

weak orthogonality

Z property · · ·
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Definitions

▶ multi-step relation ◦−→ on constrained terms for LCTRS R is defined inductively as follows:

1 x [φ ] ◦−→ x [φ ] for all variables x

2 f(s1, . . . , sn) [φ ] ◦−→ f(t1, . . . , tn) [φ ] if si [φ ] ◦−→ ti [φ ] for all 1 ⩽ i ⩽ n

3 ℓσ [φ ] ◦−→ rτ [φ ] if ρ : ℓ→ r [ψ ] ∈ Rrc, σ(x) [φ ] ◦−→ τ(x) [φ ] for all x ∈ Dom(σ),

σ(x) ∈ Val ∪ LVar(φ) for all x ∈ LVar(ρ), φ is satisfiable, and φ⇒ ψσ is valid

▶
∼◦−→ = ∼ · ◦−→ · ∼

▶ constrained critical pair s ≈ t [φ ] is

▶ development closed if s ≈ t [φ ]
∼◦−→⩾1 u ≈ v [ψ ] for some trivial u ≈ v [ψ ]

▶ almost development closed if it is no overlay and development closed, or it is overlay and

s ≈ t [φ ]
∼◦−→⩾1 · ∼→∗

⩾2 u ≈ v [ψ ] for some trivial u ≈ v [ψ ]

▶ LCTRS is (almost) development closed if all its critical pairs are (almost) development closed
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Example

LCTRS R over theory Ints

max(x, y) → x [ x ⩾ y ] max(x, y) → y [ y ⩾ x ]

constrained rewriting

max(1 + x,3 + y) [ x > 3 ∧ y = 1 ]

∼ max(1 + x,3 + y) [ x > 3 ∧ y = 1 ∧ z = 1 + x ]

→ max(z,3 + y) [ x > 3 ∧ y = 1 ∧ z = 1 + x ]

∼ max(z,3 + y) [ x > 3 ∧ y = 1 ∧ z = 1 + x ∧ w = 3 + y ]

→ max(z,w) [ x > 3 ∧ y = 1 ∧ z = 1 + x ∧ w = 3 + y ]

→ z [ x > 3 ∧ y = 1 ∧ z = 1 + x ∧ w = 3 + y ]

∼ z [ x > 3 ∧ z = 1 + x ]

multi-step rewriting

max(1 + x,3 + y) [ x > 3 ∧ y = 1 ]
∼◦−→ z [ x > 3 ∧ z = 1 + x ]
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Example

LCTRS R over theory Ints

f(x, y) → h(g(y,2 · 2)) [ x ⩽ y ∧ y = 2 ] g(x, y) → g(y, x) h(x) → x

f(x, y) → c(4, x) [ y ⩽ x ] c(x, y) → g(4,2) [ x ̸= y ]

has two constrained critical pairs with constraint φ = (x ⩽ y ∧ y = 2 ∧ y ⩽ x)

h(g(y,2 · 2)) ≈ c(4, x) [φ ] c(4, x) ≈ h(g(y,2 · 2)) [φ ]

which are almost development closed:

h(g(y,2 · 2)) ≈ c(4, x) [φ ] c(4, x) ≈ h(g(y,2 · 2)) [φ ]
∼◦−→⩾1 g(4,2) ≈ c(4, x) [ x = 2 ]

∼◦−→⩾1 g(4,2) ≈ h(g(y,2 · 2)) [ y = 2 ]
∼→⩾2 g(4,2) ≈ g(4,2) [ true ] ∼→∗

⩾2 g(4,2) ≈ g(4,2) [ true ]
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103 LCTRSs in ARI database

confluent LCTRSs

WO

APCADC PCP

SC

•
R

12

533
11 1

Theorem

▶ linear strongly closed LCTRSs are confluent CADE 2023

▶ left-linear almost parallel closed LCTRSs are confluent CADE 2023

▶ left-linear almost development closed LCTRSs are confluent IJCAR 2024

▶ left-linear LCTRSs with parallel closed parallel critical pairs are confluent IJCAR 2024
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Example

▶ LCTRS R over theory Ints

f(x) → g(x) g(x) → h(2) [ x = 2z ]

f(x) → h(x) [1 ⩽ x ⩽ 2 ] g(x) → h(1) [ x = 2z + 1 ]

▶ TRS R
f(x) → g(x) f(1) → h(1) g(n) → h(1) for all odd n ∈ Z

f(2) → h(2) g(n) → h(2) for all even n ∈ Z

has two (modulo symmetry) critical pairs

g(1) ≈ h(1) g(2) ≈ h(2)

▶ R is almost development closed since g(1) ◦−→ h(1) and g(2) ◦−→ h(2)

▶ constrained critical pair

g(x) ≈ h(x) [1 ⩽ x ⩽ 2 ]

of R is not almost development closed
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Confluence Methods for TRSs

critical pair closing systems decreasing diagrams development closed critical pairs

discrimination pairs joinable critical pairs for terminating systems orthogonality

parallel closed critical pairs parallel critical pairs redundant rules rule labeling

simultaneous critical pairs source labeling strongly closed critical pairs

tree automata weak orthogonality Z property · · ·
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Remarks

▶ confluence methods are implemented in crest ( Jonas Schöpf )

▶ crest participates in LCTRS category of Confluence Competition 2024 (later today)

Kop & Nishida (FroCoS 2013)

. . . common analysis techniques for term rewriting extend to LCTRSs without much effort

Conclusion

▶ confluence analysis of LCTRSs is complicated and thus interesting

▶ automation for LCTRSs is non-trivial

▶ defining format for representing LCTRSs is
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IWC Quiz 1

which years was CoCo not part of IWC ?

2018 (FSCD) 2019 (TOOLympics @ TACAS)

IWC Quiz 2

who published the second most papers at IWC (excluding CoCo tool papers) ?

Nao Hirokawa

IWC Quiz 3

who are the most frequent PC members at IWC ?

Cyril Chevanier Sarah Winkler
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14th International School on Rewriting (ISR 2024)

August 25 — September 1

Obergurgl

http://cl-informatik.uibk.ac.at/isr24/
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